Figure 5. Convective assembly processes for the two-dimensional crystallization of colloids. (a) Vertical deposition process. (b) Horizontal deposition process. (c) Typical problems arising from convective assembly processes as reported by Dimitrov et al. Reprinted with permission from ref 198.
SU-8 has become the favourite photoresist for high-aspect-ratio (HAR) and three-dimensional (3D) lithographic patterning due to its excellent coating, planarization and processing properties as well as its mechanical and chemical stability. However, as feature sizes get smaller and pattern complexity increases, particular difficulties and a number of material-related issues arise and need to be carefully considered. This review presents a detailed description of these effects and describes reported strategies and achieved SU-8 HAR and 3D structures up to August 2006.
Inspired by biological attachment systems, micropatterned elastomeric surfaces with pillars of different heights (between 2.5 and 80 microm) and radii (between 2.5 and 25 microm) were fabricated. Their adhesion properties were systematically tested and compared with flat controls. Micropatterned surfaces with aspect ratios above 0.5 were found to be more compliant than flat surfaces. The adhesion significantly increases with decreasing pillar radius and increasing aspect ratio of the patterned features. A preload dependence of the adhesion force has been identified and demonstrated to be crucial for obtaining adhesives with tunable adherence.
Following a recent bioinspired paradigm, patterned surfaces can exhibit better adhesion than flat contacts. Previous studies have verified that finer contact structures give rise to higher adhesion forces. In this study, we report on the effect of the tip shape, which was varied systematically in fibrillar PDMS surfaces, produced by lithographic and soft-molding methods. For fiber radii between 2.5 and 25 microm, it is found that shape exerts a stronger effect on adhesion than size. The highest adhesion is measured for mushroom-like and spatular terminals, which attain adhesion values 30 times in excess of the flat controls and similar to a gecko toe. These results explain the shapes commonly found in biological systems, and help in the exploration of the parameter space for artificial attachment systems.
Materials engineered to elicit targeted cellular responses in regenerative medicine must display bioligands with precise spatial and temporal control. Although materials with temporally regulated presentation of bioadhesive ligands using external triggers, such as light and electric fields, have been recently realized for cells in culture, the impact of in vivo temporal ligand presentation on cell-material responses is unknown. Here, we present a general strategy to temporally and spatially control the in vivo presentation of bioligands using cell adhesive peptides with a protecting group that can be easily removed via transdermal light exposure to render the peptide fully active. We demonstrate that non-invasive, transdermal time-regulated activation of cell-adhesive RGD peptide on implanted biomaterials regulates in vivo cell adhesion, inflammation, fibrous encapsulation, and vascularization of the material. This work shows that triggered in vivo presentation of bioligands can be harnessed to direct tissue reparative responses associated with implanted biomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.