We investigate the relation between general affective meaning and the use of particular phonological segments in poems, presenting a novel quantitative measure to assess the basic affective tone of a text based on foregrounded phonological units and their iconic affective properties. The novel method is applied to the volume of German poems "verteidigung der wölfe" (defense of the wolves) by Hans Magnus Enzensberger, who categorized these 57 poems as friendly, sad, or spiteful. Our approach examines the relation between the phonological inventory of the texts to both the author's affective categorization and readers' perception of the poems-assessed by a survey study. Categorical comparisons of basic affective tone reveal significant differences between the 3 groups of poems in accordance with the labels given by the author as well as with the affective rating scores given by readers. Using multiple regression, we show our sublexical measures of basic affective tone to account for a considerable part of variance (9.5%Ϫ20%) of ratings on different emotion scales. We interpret this finding as evidence that the iconic properties of foregrounded phonological units contribute significantly to the poems' emotional perception-potentially reflecting an intentional use of phonology by the author. Our approach represents a first independent statistical quantification of the basic affective tone of texts.
The literary genre of poetry is inherently related to the expression and elicitation of emotion via both content and form. To explore the nature of this affective impact at an extremely basic textual level, we collected ratings on eight different general affective meaning scales—valence, arousal, friendliness, sadness, spitefulness, poeticity, onomatopoeia, and liking—for 57 German poems (“die verteidigung der wölfe”) which the contemporary author H. M. Enzensberger had labeled as either “friendly,” “sad,” or “spiteful.” Following Jakobson's (1960) view on the vivid interplay of hierarchical text levels, we used multiple regression analyses to explore the specific influences of affective features from three different text levels (sublexical, lexical, and inter-lexical) on the perceived general affective meaning of the poems using three types of predictors: (1) Lexical predictor variables capturing the mean valence and arousal potential of words; (2) Inter-lexical predictors quantifying peaks, ranges, and dynamic changes within the lexical affective content; (3) Sublexical measures of basic affective tone according to sound-meaning correspondences at the sublexical level (see Aryani et al., 2016). We find the lexical predictors to account for a major amount of up to 50% of the variance in affective ratings. Moreover, inter-lexical and sublexical predictors account for a large portion of additional variance in the perceived general affective meaning. Together, the affective properties of all used textual features account for 43–70% of the variance in the affective ratings and still for 23–48% of the variance in the more abstract aesthetic ratings. In sum, our approach represents a novel method that successfully relates a prominent part of variance in perceived general affective meaning in this corpus of German poems to quantitative estimates of affective properties of textual components at the sublexical, lexical, and inter-lexical level.
Most language users agree that some words sound harsh (e.g. grotesque) whereas others sound soft and pleasing (e.g. lagoon). While this prominent feature of human language has always been creatively deployed in art and poetry, it is still largely unknown whether the sound of a word in itself makes any contribution to the word’s meaning as perceived and interpreted by the listener. In a large-scale lexicon analysis, we focused on the affective substrates of words’ meaning (i.e. affective meaning) and words’ sound (i.e. affective sound); both being measured on a two-dimensional space of valence (ranging from pleasant to unpleasant) and arousal (ranging from calm to excited). We tested the hypothesis that the sound of a word possesses affective iconic characteristics that can implicitly influence listeners when evaluating the affective meaning of that word. The results show that a significant portion of the variance in affective meaning ratings of printed words depends on a number of spectral and temporal acoustic features extracted from these words after converting them to their spoken form (study1). In order to test the affective nature of this effect, we independently assessed the affective sound of these words using two different methods: through direct rating (study2a), and through acoustic models that we implemented based on pseudoword materials (study2b). In line with our hypothesis, the estimated contribution of words’ sound to ratings of words’ affective meaning was indeed associated with the affective sound of these words; with a stronger effect for arousal than for valence. Further analyses revealed crucial phonetic features potentially causing the effect of sound on meaning: e.g. words with short vowels, voiceless consonants, and hissing sibilants (as in ‘piss’) feel more arousing and negative. Our findings suggest that the process of meaning making is not solely determined by arbitrary mappings between formal aspects of words and concepts they refer to. Rather, even in silent reading, words’ acoustic profiles provide affective perceptual cues that language users may implicitly use to construct words’ overall meaning.
Most language users agree that some words sound harsh (e.g. grotesque) whereas others sound soft and pleasing (e.g. lagoon). While this prominent feature of human language has always been creatively deployed in art and poetry, it is still largely unknown whether the sound of a word in itself makes any contribution to the word’s meaning as perceived and interpreted by the listener. In a large-scale lexicon analysis, we focused on the affective substrates of words’ meaning (i.e. affective meaning) and words’ sound (i.e. affective sound); both being measured on a two-dimensional space of valence (ranging from pleasant to unpleasant) and arousal (ranging from calm to excited). We tested the hypothesis that the sound of a word possesses affective iconic characteristics that can implicitly influence listeners when evaluating the affective meaning of that word. The results show that a significant portion of the variance in affective meaning ratings of printed words depends on a number of spectral and temporal acoustic features extracted from these words after converting them to their spoken form (study1). In order to test the affective nature of this effect, we independently assessed the affective sound of these words using two different methods: through direct rating (study2a), and through acoustic models that we implemented based on pseudoword materials (study2b). In line with our hypothesis, the estimated contribution of words’ sound to ratings of words’ affective meaning was indeed associated with the affective sound of these words; with a stronger effect for arousal than for valence. Further analyses revealed crucial phonetic features potentially causing the effect of sound on meaning: For instance, words with short vowels, voiceless consonants, and hissing sibilants (as in ‘piss’) feel more arousing and negative. Our findings suggest that the process of meaning making is not solely determined by arbitrary mappings between formal aspects of words and concepts they refer to. Rather, even in silent reading, words’ acoustic profiles provide affective perceptual cues that language users may implicitly use to construct words’ overall meaning.
A growing body of literature in psychology, linguistics, and the neurosciences has paid increasing attention to the understanding of the relationships between phonological representations of words and their meaning: a phenomenon also known as phonological iconicity. In this article, we investigate how a text's intended emotional meaning, particularly in literature and poetry, may be reflected at the level of sublexical phonological salience and the use of foregrounded elements. To extract such elements from a given text, we developed a probabilistic model to predict the exceeding of a confidence interval for specific sublexical units concerning their frequency of occurrence within a given text contrasted with a reference linguistic corpus for the German language. Implementing this model in a computational application, we provide a text analysis tool which automatically delivers information about sublexical phonological salience allowing researchers, inter alia, to investigate effects of the sublexical emotional tone of texts based on current findings on phonological iconicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.