In this work, we propose a Model Predictive Control (MPC)-based Reinforcement Learning (RL) method for Autonomous Surface Vehicles (ASVs). The objective is to find an optimal policy that minimizes the closed-loop performance of a simplified freight mission, including collision-free path following, autonomous docking, and a skillful transition between them. We use a parametrized MPC-scheme to approximate the optimal policy, which considers path-following/docking costs and states (position, velocity)/inputs (thruster force, angle) constraints. The Least Squares Temporal Difference (LSTD)-based Deterministic Policy Gradient (DPG) method is then applied to update the policy parameters. Our simulation results demonstrate that the proposed MPC-LSTD-based DPG method could improve the closed-loop performance during learning for the freight mission problem of ASV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.