a b s t r a c tThis paper presents one of the first national scale studies of summertime temperatures in English dwellings. Living room and bedroom temperatures were recorded in 207 homes across the England during the cool summer of 2007. Data was also collected by face-to-face household interviews. Fourteen homes (7%) were observed to be heated for part or all of the analysis period (July to August). Based on the BSEN15251 adaptive thermal comfort model, the 193 free-running dwellings would, in general, to be considered as uncomfortably cool. Over 72% of living rooms and bedrooms had more than 5% of hours below the BSEN15251 Cat II lower threshold, with over 50% having more than 5% of hours below the Cat III threshold. Detached homes and those built before 1919 were significantly cooler (p < 0.05) than those of other type and age. Static criteria revealed that, despite the cool summer, 21% of the bedrooms had more than 5% of night time hours over 26 C; which is a recommended upper limit for bedrooms. The bedrooms of modern homes, i.e. those built after 1990 or with cavity walls, were significantly warmer (p < 0.05). The bedrooms in homes built prior to 1919 were significantly cooler (p < 0.05). The living rooms of flats were significantly warmer than the living rooms in the other dwelling types (p < 0.05). The incidence of warm bedrooms in modern homes, even during a cool summer, is of concern, especially as there is a strong trend towards even better insulation standards in new homes and the energy-efficient retrofitting of existing homes.
a b s t r a c tA matched pair of 1930s semi-detached houses, in original condition and un-refurbished in terms of energy efficiency, were employed to measure the energy savings that might result from the use of zonal space heating control (ZC). The houses were adjoined and had the same synthetic, yet realistic, occupancy schedule, the same new central heating system, and were exposed to the same weather conditions. In one house the space heating was controlled conventionally (CC) according to minimum requirements in UK Building Regulation Part L1B for existing dwellings, whereas in the other house ZC was used to heat the rooms only when they were 'occupied'. Over an 8-week winter test period, the house with ZC used 11.8% less gas despite 2.4 percentage points drop in average daily boiler efficiency. Although zonal control reduced the mean indoor air temperature of the whole house by 0.6 • C, it did not reduce the average air temperature in rooms during the hours of active 'occupancy'. Normalisation and extrapolation of the results shows that, compared to CC, ZC could reduce annual gas demand for space heating by 12% in most regions of the UK, and that ZC would be a more effective energy efficiency measure in homes in the cooler, more northerly regions of the UK.
Recent empirical studies have evidenced overheating in UK dwellings during hotter periods. Vulnerable people living in social housing dwellings may be less able to tolerate heat stress or to adapt. This study is the first large scale monitoring study to investigate overheating risk in social housing dwellings in central England against three overheating risk assessment criteria. Indoor temperature data for summer 2015 were analysed for 122 freerunning social housing properties, of varying type and age, against the Chartered Institution of Building Services Engineers (CIBSE) static guidance, and the adaptive methods of TM52 and TM59. The mean bedroom and living room temperatures were 21.2°C and 21.7°C, respectively. Bedrooms were more likely to overheat than living rooms using the static criteria, with 42% of bedrooms exceeding 5% of occupied hours over 24°C, and 40% exceeding 1% of occupied hours over 26°C. 24% of living rooms exceeded 5% of occupied hours over 25°C, and 5% exceeded 1% of occupied hours over 28°C. Against TM52, only 1% of bedrooms and 2% of living rooms overheated. Against TM59, 5% of bedrooms and 1% of living rooms overheated. Analysis by various property categories identified those types of property which were more prone to overheating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.