In the present study, the functionally graded bulk Al-SiC nanocomposites were successfully fabricated by applying a novel multistep friction stir processing. Microstructural observations by scanning electron microscope indicated a proper distribution of SiC nanoparticles in the Al 6061 matrix. Microhardness profiles descended to 50 from 160 Hv due to the formation of compositionally gradient of SiC nanoparticles along the thickness. The tensile behavior of graded samples revealed a simultaneous enhancement of ultimate tensile strength (44 pct), strain at maximum stress (244 pct), and work of fracture (492 pct) with respect to the homogeneous sample. Furthermore, the graded samples sustained up to 4 pct strain after initiation of primary cracking, while the catastrophic fracture occurred instantly after cracking in the homogenous sample. A dimple-like ductile fracture surface was observed for the graded layers in which an increase in the SiC particle content will result in smaller dimple size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.