The characterization of contaminated sites can benefit from the supplementation of direct investigations with a set of less invasive and more extensive measurements. A combination of geophysical methods and direct push techniques for contaminated land characterization has been proposed within the EU FP7 project ModelPROBE and the affiliated project SoilCAM. In this paper, we present results of the investigations conducted at the Trecate field site (NW Italy), which was affected in 1994 by crude oil contamination. The less invasive investigations include ground-penetrating radar (GPR), electrical resistivity tomography (ERT), and electromagnetic induction (EMI) surveys, together with direct push sampling and soil electrical conductivity (EC) logs. Many of the geophysical measurements were conducted in time-lapse mode in order to separate static and dynamic signals, the latter being linked to strong seasonal changes in water table elevations. The main challenge was to extract significant geophysical signals linked to contamination from the mix of geological and hydrological signals present at the site. The most significant aspects of this characterization are: (a) the geometrical link between the distribution of contamination and the site's heterogeneity, with particular regard to the presence of less permeable layers, as evidenced by the extensive surface geophysical measurements; and (b) the link between contamination and specific geophysical signals, particularly evident from cross-hole measurements. The extensive work conducted at the Trecate site shows how a combination of direct (e.g., chemical) and indirect (e.g., geophysical) investigations can lead to a comprehensive and solid understanding of a contaminated site's mechanisms.
We propose an efficient algorithm for modeling seismic plane-wave propagation in vertically heterogeneous viscoelastic media using a finite-difference time-domain (FDTD) technique. In the algorithm, the wave equation is rewritten for plane waves by applying a Radon transform to the 2D general wave equation. Arbitrary values of the quality factor for [Formula: see text]- and [Formula: see text]-waves ([Formula: see text] and [Formula: see text]) are incorporated into the wave equation via a generalized Zener body rheological model. An FDTD staggered-grid technique is used to numerically solve the derived plane-wave equations. The scheme uses a 1D grid that reduces computation time and memory requirements significantly more than corresponding 2D or 3D computations. Comparing the finite-difference solutions to their corresponding analytical results, we find that the methods are sufficiently accurate. The proposed algorithm is able to calculate synthetic waveforms efficiently and represent viscoelastic attenuation even in very attenuative media. The technique is then used to estimate the plane-wave responses of a sedimentary system to normal and inclined incident waves in the Kanto area of Japan via synthetic vertical seismic profiles.
The process of capturing carbon dioxide ([Formula: see text]) and injecting it into deep saline aquifers is becoming an important method to reduce future atmospheric emissions of [Formula: see text]. Key challenges facing carbon capture and storage (CCS) are the storage reservoir's size and safety. The storage size can be addressed by focusing on large saline aquifer reservoirs. The safety concern may be lower if [Formula: see text] is injected into depleted hydrocarbon reservoirs because their cap-rock integrity is already proven, but such capping systems are generally potentially compromised by poorly cemented abandoned wells, and compared to saline aquifers, their storage size is small. Therefore, the long-term focus of CCS is on saline aquifers. To reduce the corresponding risks, comprehensive long-term monitoring is inevitable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.