Background: A multi-cancer early detection (MCED) test used to complement existing screening could increase the number of cancers detected through population screening, potentially improving clinical outcomes. The Circulating Cell-free Genome Atlas study (CCGA; NCT02889978) was a prospective, case-controlled, observational study and demonstrated that a blood-based MCED test utilizing cell-free DNA (cfDNA) sequencing in combination with machine learning could detect cancer signals across multiple cancer types and predict cancer signal origin (CSO) with high accuracy. The objective of this third and final CCGA substudy was to validate an MCED test version further refined for use as a screening tool. Patients and methods: This pre-specified substudy included 4077 participants in an independent validation set (cancer: n ¼ 2823; non-cancer: n ¼ 1254, non-cancer status confirmed at year-one follow-up). Specificity, sensitivity, and CSO prediction accuracy were measured. Results: Specificity for cancer signal detection was 99.5% [95% confidence interval (CI): 99.0% to 99.8%]. Overall sensitivity for cancer signal detection was 51.5% (49.6% to 53.3%); sensitivity increased with stage [stage I: 16.8% (14.5% to 19.5%), stage II: 40.4% (36.8% to 44.1%), stage III: 77.0% (73.4% to 80.3%), stage IV: 90.1% (87.5% to 92.2%)]. Stage I-III sensitivity was 67.6% (64.4% to 70.6%) in 12 pre-specified cancers that account for approximately two-thirds of annual USA cancer deaths and was 40.7% (38.7% to 42.9%) in all cancers. Cancer signals were detected across >50 cancer types. Overall accuracy of CSO prediction in true positives was 88.7% (87.0% to 90.2%). Conclusion:In this pre-specified, large-scale, clinical validation substudy, the MCED test demonstrated high specificity and accuracy of CSO prediction and detected cancer signals across a wide diversity of cancers. These results support the feasibility of this blood-based MCED test as a complement to existing single-cancer screening tests. Clinical trial number: NCT02889978.
A simple approach is described to fabricate reversible, thermally- and optically responsive actuators utilizing composites of poly(N-isopropylacrylamide) (pNIPAM) loaded with single-walled carbon nanotubes. With nanotube loading at concentrations of 0.75 mg/mL, we demonstrate up to 5 times enhancement to the thermal response time of the nanotube-pNIPAM hydrogel actuators caused by the enhanced mass transport of water molecules. Additionally, we demonstrate the ability to obtain ultrafast near-infrared optical response in nanotube-pNIPAM hydrogels under laser excitation enabled by the strong absorption properties of nanotubes. The work opens the framework to design complex and programmable self-folding materials, such as cubes and flowers, with advanced built-in features, including tunable response time as determined by the nanotube loading.
DNA methylation is a fundamental epigenetic mark that governs gene expression and chromatin organization, thus providing a window into cellular identity and developmental processes1. Current datasets typically include only a fraction of methylation sites and are often based either on cell lines that underwent massive changes in culture or on tissues containing unspecified mixtures of cells2–5. Here we describe a human methylome atlas, based on deep whole-genome bisulfite sequencing, allowing fragment-level analysis across thousands of unique markers for 39 cell types sorted from 205 healthy tissue samples. Replicates of the same cell type are more than 99.5% identical, demonstrating the robustness of cell identity programmes to environmental perturbation. Unsupervised clustering of the atlas recapitulates key elements of tissue ontogeny and identifies methylation patterns retained since embryonic development. Loci uniquely unmethylated in an individual cell type often reside in transcriptional enhancers and contain DNA binding sites for tissue-specific transcriptional regulators. Uniquely hypermethylated loci are rare and are enriched for CpG islands, Polycomb targets and CTCF binding sites, suggesting a new role in shaping cell-type-specific chromatin looping. The atlas provides an essential resource for study of gene regulation and disease-associated genetic variants, and a wealth of potential tissue-specific biomarkers for use in liquid biopsies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.