Novel biomaterials for bio‐ and chemical sensing applications have gained considerable traction in the diagnostic community with rising trends of using biocompatible and lowly cytotoxic material. Hydrogel‐based electrochemical sensors have become a promising candidate for their swellable, nano‐/microporous, and aqueous 3D structures capable of immobilizing catalytic enzymes, electroactive species, whole cells, and complex tissue models, while maintaining tunable mechanical properties in wearable and implantable applications. With advances in highly controllable fabrication and processability of these novel biomaterials, the possibility of bio‐nanocomposite hydrogel‐based electrochemical sensing presents a paradigm shift in the development of biocompatible, “smart,” and sensitive health monitoring point‐of‐care devices. Here, recent advances in electrochemical hydrogels for the detection of biomarkers in vitro, in situ, and in vivo are briefly reviewed to demonstrate their applicability in ideal conditions, in complex cellular environments, and in live animal models, respectively, to provide a comprehensive assessment of whether these biomaterials are ready for point‐of‐care translation and biointegration. Sensors based on conductive and nonconductive polymers are presented, with highlights of nano‐/microstructured electrodes that provide enhanced sensitivity and selectivity in biocompatible matrices. An outlook on current challenges that shall be addressed for the realization of truly continuous real‐time sensing platforms is also presented.
Cell lysis is the most important first step for molecular biology and diagnostic testing. Recently, microfluidic systems have attracted considerable attention due to advantages associated with automation, integration and miniaturization, especially in resource-limited settings. In this work, novel centrifugal microfluidic platforms with new configurations for chemical cell lysis are presented. The developed systems employ passive form of pneumatic and inertial forces for effective mixing of lysis reagents and cell samples as well as precise fluidic control. Characterizations of the developed Lab-on-a-Discs (LoaDs) have been conducted with dyed deionized (DI) waters and white blood cells (WBCs) to demonstrate the suitability of the proposed systems in terms of mixing, fluidic control and chemical cell lysis. By making comparison between the results of a well-established manual protocol for chemical cell lysis and the proposed chemical cell lysis discs, it has been proved that the developed systems are capable of realizing automated cell lysis with high throughput in terms of proper values of average DNA yield (ranging from 20.6 to 29.8 ng/µl) and purity (ranging from 1.873 to 1.907) as well as suitability of the released DNA for polymerase chain reaction (PCR). By considering the manual chemical lysis protocol as a reference, the efficiency of the LoaDs has been determined 95.5% and 91% for 10 min and 5 min lysis time, respectively. The developed LoaDs provide simple, efficient, and fully automated chemical cell lysis units, which can be easily integrated into operational on-disc elements to obtain sample-to answer settings systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.