A 7‐week study was conducted to investigate the effect of different fasting and re‐feeding regimes on compensatory growth and some physiological parameters of juvenile Siberian sturgeon (Acipenser baerii). Fish (46.5 ± 0.5 g) were fed on a diet (containing 450 g/kg crude protein and 20 MJ/kg digestible energy) according to four feeding regimes in triplicate including: control group (C, fed everyday), W1 (2 weeks of feeding followed by 1 week of fasting and 4 weeks of re‐feeding), W2 (1 week of feeding followed by 2 weeks of fasting and 4 weeks of re‐feeding) and W3 (3 weeks of fasting followed by 4 weeks of re‐feeding). The fasted groups including W1 (119.6 ± 2.1 g), W2 (118.0 ± 1.7 g) and W3 (108.5 ± 4.8) significantly lost their weights during fasting phase and did not attain the final weight of the C (137.3 ± 1.7 g) after re‐feeding phase. The re‐feeding phase increased the specific growth rate in the fasted groups compared to the C (p < .05). After the fasting phase, concentrations of T3, T4, glucose, total protein and triglyceride in plasma of fasted groups were decreased, but levels of total cholesterol, aspartate aminotransferase, alkaline phosphatase and lactate dehydrogenase increased compared to the C. After re‐feeding phase, except for glucose level, all mentioned metabolites were restored in the plasma of W1 group, but total protein level and aspartate aminotransferase concentrations in plasma were not restored in W2 and W3 groups. Overall, our finding demonstrated 4 weeks of re‐feeding was too short to induce full compensatory growth in A. baerii juveniles.
The growth of cherry fruit is generally described using a double sigmoid model, divided into four growth stages. Abiotic factors are considered to be significant components in modifying fruit growth, and among these, the vapor pressure deficit (VPD) is deemed the most effective. In this study, we investigated sweet cherry fruit growth through the continuous, hourly monitoring of fruit transversal diameter over two consecutive years (2019 and 2020), from the beginning of the third stage to maturation (forth stage). Extensometers were used in the field and VPD was calculated from weather data. The fruit growth pattern up to the end of the third stage demonstrated three critical steps during non-rainy days: shrinkage, stabilization and expansion. In the third stage of fruit growth, a partial clockwise hysteresis curve of circadian growth, as a response to VPD, appeared on random days. The pattern of fruit growth during rainy days was not distinctive, but the amount and duration of rain caused a consequent decrease in the VPD and indirectly boosted fruit growth. At the beginning of the fourth stage, the circadian growth changed and the daily transversal diameter vs VPD formed fully clockwise hysteresis curves for most of this stage. Our findings indicate that hysteresis can be employed to evaluate the initial phenological phase of fruit maturation, as a fully clockwise hysteresis curve was observable only in the fourth stage of fruit growth. There are additional opportunities for its use in the management of fruit production, such as in precision fruit farming.
Recently, several studies on olive fruit growth have focused on circadian monitoring as an important orchard management tool. The olive fruit growth trend is described by double sigmoid model with four growth phases, where the third phase spans from the end of pit hardening to initial fruit maturation, and the last phase includes olive maturation up to fruit drop. Environmental factors play an important role in fruit growth, with vapor pressure deficit (VPD) being a keystone factor. Our experiment was designed to hourly monitor olive (Olea europaea L. cv. ‘Frantoio’) fruit transversal diameter from approximately initial pit hardening (II Phase), extension (III Phase) until harvest time (IV Phase) in the attempt to determine whether fruit growth dynamically responds to environmental variables such as diurnal VPD change in different stages of fruit development. Automatic extensimeters were applied in open field and VPD was calculated from data of our weather station. Throughout the experiment period, the circadian model of fruit growth showed two steps: shrinkage and expansion. Almost in all days of the third phase of fruit growth, daily response of transversal diameter to VPD formed complete clockwise hysteresis loops. During the fourth phase of fruit growth, with increasing fruit maturation, the complete clockwise hysteresis loop experienced some abnormality. At the fourth stage of fruit growth there were incomplete and partial clockwise hysteresis loops. We conclude that hysteresis can be employed to detect the shift between the end of the third phase (cell expansion) and the beginning of the fourth phase (fruit maturation) of fruit growth. The disappearance of the complete clockwise hysteresis loop and the substitution with incomplete, or partial clockwise hysteresis loops was observable only in the fourth stage of fruit growth. These results can be valuable for any smart fruit management of olive fruit production.
The transversal fruit diameter (FD) was monitored continuously by automatic extensimeters (fruit gauges) in order to monitor fruit growth dynamics under deficit irrigation treatments. The daily diameter fluctuation (ΔD, mm), the daily growth (ΔG, mm), the cumulative fruit growth (CFG, mm), and the fruit relative growth rate (RGR, mm mm−1 h−1) of four olive cultivars (Ascolana dura, Piantone di Falerone, Arbequina, and Lea) were studied during the third phase of fruit growth. Two regulated deficit irrigation treatments DI-20 (20% of ETc) and DI-10 (10% of ETc) were applied. The daily hysteretic pattern of FD versus the environmental variable of vapor pressure deficit (VPD) was evaluated using the data of a local weather station. The assessment of fruit growth parameters showed cultivar-specific response to water stress. For instance, after performing deficit irrigation, minimum RGR in different cultivars downsized with various slopes which suggested a very different response of the cultivars to dehydration. On the other hand, the daily hysteretic pattern of FD versus VPD was detected in all the studied cultivars, and a quantitative index (height of hysteresis curves) used for explanation of hysteresis magnitude’s changed according to the deficit irrigation treatments. The results showed a significant reduction of height of hysteresis curves by irrigation treatments which were not cultivar-specific. The quantitative index for hysteresis curve magnitude’s change in the four olive cultivars of Ascolana dura, Piantone di Falerone, Arbequina and Lea can efficiently estimate the plant water response to irrigation treatment in olive orchards. However, further investigation needs to be done to implement precise irrigation systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.