HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The testing and study of emerging materials-such as additively manufactured materials-demands for specimen designs that are cost effective and time saving. The design of a small-sized bending-fatigue test specimen for an ultrasonic fatigue testing system is reported in this paper. The design is optimized based on the finite element analysis and analytical-solution results to achieve the proper vibration shape and stress distribution. The proposed design is evaluated in the high-and very-high-cycle fatigue regimes under 20-kHz frequency. Both simulation and testing results confirm that the desirable vibration mode occurs and the specimen fails at the designated test (gauge) section, where the maximum stress exists. The stress-life (S-N) curve is obtained for Inconel alloy 718 and indicates an expected trend.
Fatigue life estimation accuracy of mechanical parts and assemblies has always been the source of concern in different industries. The main contribution of this article lies in a study on the accuracy of different multiaxial fatigue criteria, proposing and investigating the accuracy of four optimized fatigue crack initiation life estimation methods—volume, weighted volume, surface and point, thereby improving the multiaxial fatigue life estimation accuracy. In order to achieve the goal, the fatigue lives of bolt clamped specimens, previously tested under defined experimental conditions, were estimated during fatigue crack initiation and fatigue crack growth and then summed together. In the fatigue crack initiation part, a code was written and used in the MATLAB software environment based on critical plane approach and the different multiaxial fatigue criteria. Besides the AFGROW software was utilized to estimate the crack growth share of fatigue life. Experimental and numerical results showed to be in agreement. Furthermore, detailed study and comparison of the results with the available experimental data showed that a combination of Smith–Watson–Topper approach and volume method results in lower error values, while a combination of Fatemi–Socie criterion and surface or point method presents estimated lives with lower error values. In addition, the numerical proposed procedure resulted in a good prediction of the location of fatigue crack initiation.
In this paper, small blocks of 17-4 PH stainless steel were manufactured via extrusion-based bound powder extrusion (BPE)/atomic diffusion additive manufacturing (ADAM) technology in two different orientations. Ultrasonic bending-fatigue and uniaxial tensile tests were carried out on the test specimens prepared from the AM blocks. Specifically, a recently-introduced small-size specimen design is employed to carry out time-efficient fatigue tests. Based on the results of the testing, the stress–life (S-N) curves were created in the very high-cycle fatigue (VHCF) regime. The effects of the printing orientation on the fatigue life and tensile strength were discussed, supported by fractography taken from the specimens’ fracture surfaces. The findings of the tensile test and the fatigue test revealed that vertically-oriented test specimens had lower ductility and a shorter fatigue life than their horizontally-oriented counterparts. The resulting S-N curves were also compared against existing data in the open literature. It is concluded that the large-sized pores (which originated from the extrusion process) along the track boundaries strongly affect the fatigue life and elongation of the AM parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.