Dietary protein is a vital nutrient for humans and animals, which is primarily digested into peptides and free amino acids (FAAs) in the upper gastrointestine with the help of proteases. The products are absorbed by the enterocytes and are metabolized in different organs of body. Dietary protein, peptides and FAAs that escape digestion and absorption of the small intestine will enter the large intestine for further fermentation by the vast gut microbiota. Particularly, amino acid (AAs) metabolism by bacteria occurs via either deamination or decarboxylation reactions and generates short chain fatty acids (SCFAs) or amines, respectively. These metabolites elicit a wide range of biological functions via different receptors and mechanisms. This review discusses the interaction between protein metabolites and gastrointestine, illustrates regulation of intestinal motility and immune response by SCFAs and their receptors, and focuses on modulation of intestinal inflammation and signal transduction by biogenic amines (BAs) involving polyamines and monoamine neurotransmitters.
Proanthocyanidins have been suggested as an effective antibiotic alternative, however their mechanisms are still unknown. The present study investigated the effects of grape seed proanthocyanidins on gut microbiota and mucosal barrier using a weaned piglet model in comparison with colistin. Piglets weaned at 28 day were randomly assigned to four groups treated with a control ration, or supplemented with 250 mg/kg proanthocyanidins, kitasamycin/colistin, or 250 mg/kg proanthocyanidins and half-dose antibiotics, respectively. On day 28, the gut chyme and tissue samples were collected to test intestinal microbiota and barrier function, respectively. Proanthocyanidins treated piglets had better growth performance and reduced diarrhea incidence ( P < 0.05), accompanied with decreased intestinal permeability and improved mucosal morphology. Gene sequencing analysis of 16S rRNA revealed that dietary proanthocyanidins improved the microbial diversity in ileal and colonic digesta, and the most abundant OTUs belong to Firmicutes and Bacteroidetes spp . Proanthocyanidins treatment decreased the abundance of Lactobacillaceae , and increased the abundance of Clostridiaceae in both ileal and colonic lumen, which suggests that proanthocyanidins treatment changed the bacterial composition and distribution. Administration of proanthocyanidins increased the concentration of propionic acid and butyric acid in the ileum and colon, which may activate the expression of GPR41. In addition, dietary proanthocyanidins improved the antioxidant indices in serum and intestinal mucosa, accompanied with increasing expression of barrier occludin. Our findings indicated that proanthocyanidins with half-dose colistin was equivalent to the antibiotic treatment and assisted weaned animals in resisting intestinal oxidative stress by increasing diversity and improving balance of gut microbes.
Type 2 diabetes has become a global public health problem affecting approximately 380 million people throughout the world. It can cause many complications and lead to greater mortality. At present, there is no available medicine for effectively preventing diabetes. L-arginine, a functional amino acid, the precursor of nitric oxide, plays a crucial role in maintenance, reproduction, growth, anti-aging and immunity for animals. Growing clinical evidence indicates that dietary L-arginine supplementation can reduce obesity, decrease arterial blood pressure, resist oxidation and normalize endothelial dysfunction to bring about remission of type 2 diabetes. The potential molecular mechanism may play a role in modulating glucose homeostasis, promoting lipolysis, maintaining hormone levels, ameliorating insulin resistance, and fetal programing in early stages. The possible signaling pathway of the beneficial effects of L-arginine likely involves L-arginine-nitric oxide pathway through which cell signal protein can be activated. Accumulating studies have indicated that L-arginine may have potential to prevent and/or relieve type 2 diabetes via restoring insulin sensitivity in vivo.
Objectives - To explore the use of boron neutron capture therapy (BNCT) for patients with glioblastoma multiforme (GBM), recurring after surgery and conventional radiotherapy (photon radiotherapy). Materials and Methods - Boron uptake in recurrent GBM was measured for four patients. Twelve patients were subsequently treated by BNCT with boronophenylalanine-fructose (900 mg/kg body weight), administered by intravenous infusion for 6 h. Results - Median survival time from initial diagnosis was 22.2 months. Comparison with other BNCT studies indicates a clinical advantage of the prolonged infusion. BNCT was well tolerated and quality of life remained stable until tumor progression for all 12 patients. No correlation was found between survival times and minimum tumor dose and number of radiation fields. Conclusions - Boron neutron capture therapy, with the prolonged procedure for infusion, is at least as effective as other radiation therapies for recurrent GBM and is delivered in one treatment session, with low radiation dose to the healthy brain. Survival from diagnosis compares favorably with that obtained with conventional radiotherapy plus concomitant and adjuvant temozolomide (TMZ) and survival from recurrence compares favorably with that obtained with TMZ at first relapse. The results of the present investigation are encouraging and should be confirmed in a randomized trial.
The meaningful sharing and combining of clinical results from different centers in the world performing boron neutron capture therapy (BNCT) requires improved precision in dose specification between programs. To this end absorbed dose normalizations were performed for the European clinical centers at the Joint Research Centre of the European Commission, Petten (The Netherlands), Nuclear Research Institute, Rez (Czech Republic), VTT, Espoo (Finland), and Studsvik, Nyköping (Sweden). Each European group prepared a treatment plan calculation that was bench-marked against Massachusetts Institute of Technology (MIT) dosimetry performed in a large, water-filled phantom to uniformly evaluate dose specifications with an estimated precision of +/-2%-3%. These normalizations were compared with those derived from an earlier exchange between Brookhaven National Laboratory (BNL) and MIT in the USA. Neglecting the uncertainties related to biological weighting factors, large variations between calculated and measured dose are apparent that depend upon the 10B uptake in tissue. Assuming a boron concentration of 15 microg g(-1) in normal tissue, differences in the evaluated maximum dose to brain for the same nominal specification of 10 Gy(w) at the different facilities range between 7.6 and 13.2 Gy(w) in the trials using boronophenylalanine (BPA) as the boron delivery compound and between 8.9 and 11.1 Gy(w) in the two boron sulfhydryl (BSH) studies. Most notably, the value for the same specified dose of 10 Gy(w) determined at the different participating centers using BPA is significantly higher than at BNL by 32% (MIT), 43% (VTT), 49% (JRC), and 74% (Studsvik). Conversion of dose specification is now possible between all active participants and should be incorporated into future multi-center patient analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.