The dielectric barrier discharge (DBD) plasma actuator has in the last decade emerged as an active flow control device. This paper investigates the experimental measurements concerning the instantaneous ionic wind velocity induced by DBD plasma actuator in quiescent air at atmospheric pressure. A parametric study has also been undertaken to find a realistic means of increasing the velocity of the ionic wind. The electrical and mechanical characteristics of the plasma actuator have been studied under different conditions. The aim of this article is to find ways of optimizing the geometrical and electrical parameters to obtain more effective ionic wind for flow control. The results show that increments in the excitation frequency, leads to maximum velocity at the nearer position of the surface. Further analysis show that the frequency of the vortices produced by the related actuators is exactly the same as the excitation frequency of the applied voltage. It was also found that an increase in the duty cycle correspondingly increases the power of the produced vortex shedding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.