This paper presents the development of artificial neural networks (ANN) as pattern recognition systems to classify surface electromyography signals (sEMG) into nine select hand motions from seven subjects. Multiple networks were designed to determine how well a network could adapt to signals from different subjects. This was achieved by developing multiple networks with different combinations of the volunteers for training. Each network was tested with signals from all volunteers to determine how well they could adapt to new subjects. It was found that ANNs trained using only one or two subjects would perform exceptionally well when tested with signals from the same subjects but relatively poorly when tested with signals from new subjects. As the number of subjects used for training increased, the ability of the network to accurately classify the signals from the trainees decreased but their ability to adapt to signals from new subjects increased. Solely based on these results, it can be inferred that ANNs developed using signals from a large amount of subjects could be used to accurately classify signals from completely new subjects. Research presented in this paper has potential to be further developed as a basis for utilizing sEMG as control signals in electric devices such as myoelectric prosthesis or humanoid control. Index Terms-sEMG signal classification, Artificial Neural Networks (ANN), human-machine interaction
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.