In recent years, protection of the environment from activities associated with enhanced oil recovery has been considered a crucial priority for decision-makers in the international community. The in situ combustion process as a promising thermal enhanced oil recovery method has been attracting considerable interest in terms of improving oil production and environmental protection. However, this technique is not yet well studied. This paper outlines a new approach to improve the process of heavy oil oxidation by designing new biobased oil-soluble catalysts that are able to maintain and stabilize the combustion flame front of the in situ combustion process. A comprehensive theoretical and experimental study including thermal analysis (thermogravimetry/differential scanning calorimetry, TG/DSC) and quantum calculations was used to shed light on the effect of the ligand structure in the oil-soluble catalytic system on the heavy oil oxidation process. The obtained accurate results proved that metal interaction with the designed ligands increased, which led to a decrease in the energy of activation and an increase in the heavy oil oxidation reaction rate. Besides, the obtained DSC curves showed one peak in the presence of Cu and biobased ligands, contrary to the curves obtained for heavy oil oxidation reported with other ligands and metals. In other words, the obtained catalysts merged low-temperature-and high-temperature oxidation regions into one region. These findings reveal that the structure of ligands can significantly affect their interaction with metals in oil-soluble catalysts, and therefore the efficiency of catalysts is dramatically improved. We believe that our work could be usefully employed for further studies to clarify the mechanism of the in situ combustion behavior of heavy oil for a better impact on the environment.
Electromagnetic impact on oil reservoir manifests itself in various physical and chemical phenomena and attracts a significant scientific and technological interest. Microwave (MW) radiation heating can be more efficient for the oil recovery than heat transfer by convection or by thermal conduction. MW influence can also lead to significant changes in the physicochemical and rheological properties of oil caused by chemical processes of transformation of the oil high-molecular components such as resins and asphaltenes. The efficiency of transition-metal catalysts applied for the in-situ conversion of hydrocarbons directly in the reservoir might be significantly increased by exposing the oil formation to MW radiation. Actually, transition metals nanoparticles and their oxides are considered as active absorbers of MW radiation and; therefore, they can be used to intensify MW impact on the reservoir. Catalyst particles dispersed in the formation provide enhanced MW sweep. Taken together, the functioning of the catalysts and the effect of microwave radiation provide deep conversion of resins and asphaltenes, a decrease in the viscosity of the produced oil and an increase in oil recovery factor, along with a decrease in water cut of the well production. The present review analyzes the latest works on the combined application of microwave exposure and dispersed catalysts. In addition, this review discusses the prospects and perspectives of practical application of electromagnetic heating to enhance heavy oil recovery in the presence of nanoparticles.
The most widely applied methods to unlock heavy oil and natural bitumen resources in the world are still based on steam injection techniques. Improving the efficiency of hydrothermal processes poses a great challenge. The co-injection of various additives is practiced to lower the steam-to-oil ratio (SOR), viscosity alteration and to improve heavy oil properties. Organic solvents, non-condensable gases, air and surfactants are the preferred chemicals to be combined with steam. This study provides an investigation of the surfactant-assisted hydrothermal upgrading of heavy oil at 200 °C. The thermal stability and salt resistivity of two non-ionic surfactants (SA–3 and Biolub Green) were investigated. Moreover, the improved performance of the surfactants was established by performing an SARA analysis, elemental analysis, FT-IR spectroscopy, and EPR analysis, and by studying the viscosity reduction degree. The experimental results showed that surfactants lead to the in-depth destructive hydrogenation of the high-molecular components of heavy oil such as resins and asphaltenes. However, the content of light fractions increased. According to the results of the elemental analysis, the surfactants assist in the hydrodesulphurization of heavy oil. Overall, the physical and chemical consequences of hydrothermal upgrading in the presence of surfactants led to the irreversible viscosity reduction of heavy oil.
Our knowledge of electromagnetic heating’s effect on heavy oil upgrading is largely based on very limited data. The aim of the present research was thus to study in detail the effect of microwave exposure in the absence and presence of nanosized magnetite on the composition of heavy oil. The obtained data reveal that the use of nanosized magnetite improves not only microwave radiation application as a result of its absorption and release of thermal energy but also that these nanoparticles have a catalytic ability to break carbon–heteroatom bonds in the composition of resins and asphaltene molecules. In fact, the overall reduction in asphaltenes or resins does not always adequately describe very important changes in asphaltene composition. Even a small fraction of broken carbon–heteroatom bonds can lead to an increase in the mobility of asphaltenes. Moreover, this study has shed light on the important evidence for asphaltenes’ transformation, which was found to be the formation of light aromatic compounds, such as alkylbenzenes, naphthalenes and phenanthrenes. These compounds were fixed in the composition of the aromatic fraction. We believe that these compounds could be the fragments obtained from asphaltenes’ degradation. The evidence from this study points toward the idea that asphaltenes’ destruction is crucial for increasing oil mobility in the reservoir rock during its thermal stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.