a b s t r a c tThe eXtended Finite Element Method (XFEM) is implemented to model the effect of the mechanical and thermal shocks on a body with a stationary crack. The classical thermoelasticity equations are considered. The Newmark and the Crank-Nicolson time integration schemes are used to solve the dynamical system of matrix equations obtained from the spatial discretization of the elastic and thermal parts respectively. The variation of dynamical stress intensity factors versus time are computed by the interaction integral method. A C++code is developed to do the different stages of the calculations from mesh generation to the calculation of interaction integrals. Several elastic and thermoelastic numerical examples are implemented, where the dynamical behaviour of the face and tip enrichments of XFEM are investigated and the results are discussed in detail.
SUMMARYA comprehensive study is performed on the use of higher-order terms of the crack tip asymptotic fields as enriching functions for the eXtended FEM (XFEM) for both cohesive and traction-free cracks. For tractionfree cracks, the Williams asymptotic field is used to obtain highly accurate stress intensity factors (SIFs), directly from the enriched degrees of freedom without any post-processing. The low accuracy of the results of the original research on this subject by Liu et al. [Int. J. Numer. Meth. Engng., 2004; 59:1103-1118 is remedied here by appropriate modifications of the enrichment scheme. The modifications are simple and can be easily included into an XFEM computer code. For cohesive cracks, the relevant asymptotic field is used, and two widely used criteria including the SIFs criterion and the stress criterion are examined for the crack growth simulation. Both linear and nonlinear cohesive laws are used. For the stress criterion, averaging is avoided due to the highly accurate crack tip approximation because of the higherorder enrichment. Then, a modified stress criterion is proposed, which is shown to be applicable to a wider class of problems. Several numerical examples, including straight and curved cracks, stationary and growing cracks, single and multiple cracks, and traction-free and cohesive cracks, are studied to investigate in detail the robustness and efficiency of the proposed enrichment scheme.
An eXtended Finite Element Method (XFEM) is presented that can accurately predict the stress intensity factors (SIFs) for thermoelastic cracks. The method uses higher order terms of the thermoelastic asymptotic crack tip fields to enrich the approximation space of the temperature and displacement fields in the vicinity of crack tipsaway from the crack tip the step function is used. It is shown that improved accuracy is obtained by using the higher order crack tip enrichments and that the benefit of including such terms is greater for thermoelastic problems than for either purely elastic or steady state heat transfer problems. The computation of SIFs directly from the XFEM degrees of freedom and using the interaction integral is studied. Directly computed SIFs are shown to be significantly less accurate than those computed using the interaction integral. Furthermore, the numerical examples suggest that the directly computed SIFs do not converge to the exact SIFs values, but converge roughly to values near the exact result. Numerical simulations of straight cracks show that with the higher The financial support of the National Elite Foundation is gratefully acknowledged. order enrichment scheme, the energy norm converges monotonically with increasing number of asymptotic enrichment terms and with decreasing element size. For curved crack there is no further increase in accuracy when more than four asymptotic enrichment terms are used and the numerical simulations indicate that the SIFs obtained directly from the XFEM degrees of freedom are inaccurate, while those obtained using the interaction integral remain accurate for small integration domains. It is recommended in general that at least four higher order terms of the asymptotic solution be used to enrich the temperature and displacement fields near the crack tips and that the J -or interaction integral should always be used to compute the SIFs.
SUMMARYIn this paper, the Polytope Finite Element Method is employed to model an embedded interface through the body, independent of the background FEM mesh. The elements that are crossed by the embedded interface are decomposed into new polytope elements which have some nodes on the interface line. The interface introduces discontinuity into the primary variable (strong) or into its derivatives (weak). Both strong and weak discontinuities are studied by the proposed method through different numerical examples including fracture problems with traction-free and cohesive cracks, and heat conduction problems with Dirichlet and Dirichlet-Neumann types of boundary conditions on the embedded interface. For tractionfree cracks which have tip singularity, the nodes near the crack tip are enriched with the singular functions through the eXtended Finite Element Method.The concept of Natural Element Coordinates (NECs) is invoked to drive shape functions for the produced polytopes. A simple treatment is proposed for concave polytopes produced by a kinked interface and also for locating crack tip inside an element prior to using the singularity enrichment. The proposed method pursues some implementational details of eXtended/Generalized Finite Element Methods for interfaces. But here the additional DOFs are constructed on the interface lines in contrast to X/G-FEM, which attach enriched DOFs to the previously existed nodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.