The function of glycosylphosphatidylinositol-anchored sperm hyaluronidase PH-20 in fertilization has long been believed to enable acrosome-intact sperm to pass through the layer of cumulus cells and reach the egg zona pellucida. In this study, we have produced mice carrying a null mutation in the PH-20 gene using homologous recombination. Despite the absence of sperm PH-20, the mutant male mice were still fertile. In vitro fertilization assays showed that mouse sperm lacking PH-20 possess a reduced ability to disperse cumulus cells from the cumulus mass, resulting in delayed fertilization solely at the early stages after insemination. Moreover, SDS-PAGE of sperm extracts and subsequent Western blot analysis revealed the presence of other hyaluronidase(s), except PH-20, presumably within the acrosome of mouse sperm. These data provide evidence that PH-20 is not essential for fertilization, at least in the mouse, suggesting that the other hyaluronidase(s) may play an important role in sperm penetration through the cumulus cell layer and/or the egg zona pellucida, possibly in cooperation with PH-20, although the importance of sperm motility cannot be neglected.
Spermatogenesis is a highly specialized process of cellular differentiation to produce spermatozoa. This differentiation process accompanies morphological changes that are controlled by a number of genes expressed in a stage-specific manner during spermatogenesis. Here we show that in mice, the absence of a testis-specific, cytoplasmic polyadenylate [poly(A)] polymerase, TPAP, results in the arrest of spermiogenesis. TPAP-deficient mice display impaired expression of haploid-specific genes that are required for the morphogenesis of germ cells. The TPAP deficiency also causes incomplete elongation of poly(A) tails of particular transcription factor messenger RNAs. Although the overall cellular level of the transcription factor TAF10 is unaffected, TAF10 is insufficiently transported into the nucleus of germ cells. We propose that TPAP governs germ cell morphogenesis by modulating specific transcription factors at posttranscriptional and posttranslational levels.
Although ovarian theca cells play an indispensable role in folliculogenesis by providing follicular structural integrity and steroid substrates for estrogen production, little information is available about their recruitment, growth, and differentiation because their immature forms have not been identified. We have isolated putative thecal stem cells with the ability to self-renew and differentiate in vivo and in vitro. They are similar to fibroblasts in morphology and proliferate in vitro as round colonies with a homogenous cell population. They were induced to differentiate into early precursors and steroidogenic cells in a stepwise manner after treatment with serum, luteinizing hormone, and paracrine factors from granulosa cells. At each differentiation step, these cells displayed appropriate gene expression and morphological markers and later secreted androstenedione. The fully mature morphology was achieved by coculture with isolated granulosa cells. When transplanted into the ovaries, the putative thecal stem cells colonized exclusively in the ovarian interstitium and the thecal layer of follicles as differentiated cells. Thus, thecal stem cells appear to be present in neonatal ovaries and can be isolated, purified, and induced to differentiate in vitro. Thecal stem cells could provide an invaluable in vitro experimental system to study interactions among the oocytes, granulosa cells, and theca cells during normal folliculogenesis and to study ovarian pathology caused by theca cell dysfunction.follicle ͉ oocyte ͉ ovary
We have previously indicated that at least in mouse, sperm serine protease(s) other than acrosin probably act on the limited proteolysis of egg zona pellucida to create a penetration pathway for motile sperm, although the participation of acrosin cannot be ruled out completely. A 42-kDa gelatin-hydrolyzing serine protease present in mouse sperm is a candidate enzyme involved in the sperm penetration of the zona pellucida. In this study, we have PCR-amplified an EST clone encoding a testicular serine protease, termed TESP5, and then screened a mouse genomic DNA library using the DNA fragment as a probe. The DNA sequence of the isolated genomic clones indicated that the TESP5 gene is identical to the genes coding for testicular testisin and eosinophilic esp-1. Immunochemical analysis using affinitypurified anti-TESP5 antibody revealed that 42-and 41-kDa forms of TESP5 with the isoelectric points of 5.0 to 5.5 are localized in the head, cytoplasmic droplet, and midpiece of cauda epididymal sperm probably as a membranous protein. Moreover, these two forms of TESP5 were selectively included into Triton X-100-insoluble microdomains, lipid rafts, of the sperm membranes. These results show the identity between TESP5/testisin/esp-1 and the 42-kDa sperm serine protease. When HEK293 cells were transformed by an expression plasmid carrying the entire protein-coding region of TESP5, the recombinant protein produced was released from the cell membrane by treatment with Bacillus cereus phosphatidylinositol-specific phospholipase C, indicating that TESP5 is glycosylphosphatidylinositol-anchored on the cell surface. Enzymatic properties of recombinant TESP5 was similar to but distinguished from those of rat acrosin and pancreatic trypsin by the substrate specificity and inhibitory effects of serine protease inhibitors.Mammalian fertilization involves a complex set of molecular events, including adhesion and binding of sperm to the zona pellucida (ZP), 1 an extracellular glycoprotein matrix surrounding the egg, acrosome reaction, penetration of sperm through the ZP, and fusion between sperm and egg (for reviews, see Refs. 1-4). Of these events, the acrosome reaction is a fusion between the outer acrosomal and plasma membranes at the anterior region of sperm head. Consequently, the acrosomal components are released and interact with the ZP. The sperm penetration of the ZP is believed to require both sperm motility and enzymatic hydrolysis by acrosomal protease(s) (1, 5).A sperm serine protease, acrosin, is localized in the acrosomal matrix as an enzymatically inactive zymogen, proacrosin, which is then converted into the active form during the acrosome reaction (6, 7). The role of acrosin in fertilization has long been considered to participate in the limited proteolysis of ZP, which enables sperm to penetrate the ZP. However, our previous work (8) using acrosin-deficient mutant mice conclusively showed that acrosin is not essential both for the sperm penetration of the egg ZP and for fertilization. The deficiency of acrosin cause...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.