Stalking refers to intrusive acts experienced on two or more occasions (according to most definitions and legislation) which create apprehension and/or fear. Statistically, most victims of stalking are female, and most stalkers are male. Female-perpetrated stalking has been explored less, even though it has a significant effect on victims. Rigid societal beliefs that female-perpetrated crime is not worthy of being taken seriously or is somehow less intrusive has contributed to lower rates of research, reporting, and understanding of female-perpetrated stalking. Victims often experience a lack of support, and therefore many female-perpetrated cases go unreported. This paper reviews the literature on female-perpetrated stalking and provides commentary on violence, mental health, and victimization. Analysis of the empirical literature suggested that female stalkers pose a similar level of violence risk as their male counterparts, although this risk is often perceived as nonthreatening. Mental illness was identified in both male and female stalkers, with mental illness commonly linked to violence among stalkers. Females were found to target acquaintances and engage in different stalking behaviors. Implications of these findings are further discussed.
Local severe storms are extreme weather events that last only for a few hours and evolve rapidly. Very often the mesoscale features associated these local severe storms are not well-captured synoptically. Forecasters have to predict the changing weather situation in the next 0-6 hrs based on latest observations. The operational process to predict the weather in the next 0-6 hrs is known as “nowcast”. Observational data that are typically suited for nowcasting includes Doppler Weather Radar (DWR), wind profiler, microwave sounder and satellite radiance. To assist forecasters, in predicting the weather information and making warning decisions, various nowcasting systems have been developed by various countries in recent years. Notable examples are Auto-Nowcaster (U.S.), BJ-ANC (China-U.S.), CARDS (Canada), GRAPES-SWIFT (China), MAPLE (Canada), NIMROD (U.K.), NIWOT (U.S.), STEPS (Australia), SWIRLS (Hong Kong, China), TIFS (Australia), TITAN (U.S.) (Dixon and Wiener, 1993) and WDSS (U.S.). Some of these systems were used in the two forecast demonstration projects organized by WMO for the Sydney 2000 and Beijing 2008 Olympic. A common feature of these systems is that they all use rapidly updated radar data, typically once every 6 minutes.The nowcasting system SWIRLS (“Short-range Warning of Intense Rainstorms in Localized Systems”) has been developed by the Hong Kong Observatory (HKO) and was put into operation in Hong Kong in 1999. Since then system has undergone several upgrades, the latest known as “SWIRLS-2” to support the Beijing 2008 Olympic Games. SWIRLS-2 is being adapted by India Meteorological Department (IMD) for use and test for the Commonwealth Games 2010 at New Delhi with assistance from HKO. SWIRLS-2 ingests a range of observation data including SIGMET/IRIS DWR radar product, raingauge data, radiosonde data, lightning data to analyze and predict reflectivity, radar-echo motion, QPE, QPF, as well as track of thunderstorm and its associated severe weather, including cloud-to-ground lightning, severe squalls and hail, and probability of precipitation. SWIRLS-2 uses a number of algorithms to derive the storm motion vectors. These include TREC (“Tracking of Radar Echoes by Correlation”), GTrack (Group tracking of radar echoes, an object-oriented technique for tracking the movement of a storm as a whole entity) and lately MOVA (“Multi-scale Optical flow by Variational Analysis”). This latest algorithm uses optical flow, a technique commonly used in motion detection in image processing, and variational analysis to derive the motion vector field. By cascading through a range of scales, MOVA can better depict the actual storm motion vector field as compared with TREC and GTrack which does well in tracking small scales features and storm entity respectively. In this paper the application of TREC and MOVA to derive the storm motion vector, reflectivity and QPF using Indian DWR data has been demonstrated for the thunderstorm events over Kolkata and New Delhi. The system has been successfully operationalized for Delhi and neighborhood area for commonwealth games 2010. Real time products are available on IMD website
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.