Microalgae are highly diverse photosynthetic organisms with higher growth rate and simple nutritional requirements. They are evolved with an efficiency to adapt to a wide range of environmental conditions, resulting in a variety of genetic diversity. Algae accounts for nearly half of global photosynthesis, which makes them a crucial player for CO2 sequestration. In addition, they have metabolic capacities to produce novel secondary metabolites of pharmaceutical, nutraceutical and industrial applications. Studies have explored the inherent metabolic capacities of microalgae with altered growth conditions for the production of primary and secondary metabolites. However, the production of the targeted metabolites at higher rates is not guaranteed just with the inherent genetic potentials. The strain improvement using genetic engineering is possible hope to overcome the conventional methods of culture condition improvements for metabolite synthesis. Although the advanced gene editing tools are available, the gene manipulation of microalgae remains relatively unexplored. Among the performed gene manipulations studies, most of them focus on primary metabolites with limited focus on secondary metabolite production. The targeted genes can be overexpressed to enhance the production of the desired metabolite or redesigning them using the synthetic biology. A mutant (KOR1) rich in carotenoid and lipid content was developed in a recent study employing mutational breeding in microalgae (Kato, Commun. Biol, 2021, 4, 450). There are lot of challenges in genetic engineering associated with large algal diversity but the numerous applications of secondary metabolites make this field of research very vital for the biotech industries. This review, summarise all the genetic engineering studies and their significance with respect to secondary metabolite production from microalgae. Further, current genetic engineering strategies, their limitations and future strategies are also discussed.
Mycosporine-like amino acids (MAAs), are secondary metabolites, first reported in 1960 and found to be associated with the light-stimulated sporulation in terrestrial fungi. MAAs are nitrogenous, low molecular weight, water soluble compounds, which are highly stable with cyclohexenone or cycloheximine rings to store the free radicals. Microalgae are considered as a good source of different kinds of MAAs, which in turn, has its own applications in various industries due to its UV absorbing, anti-oxidant and therapeutic properties. Microalgae can be easily cultivated and requires a very short generation time, which makes them environment friendly source of biomolecules such as mycosporine-like amino acids. Modifying the cultural conditions along withmanipulation of genes associated with mycosporine-like amino acids biosynthesis can help to enhance MAAs synthesis and, in turn, can make microalgae suitable bio-refinery for large scale MAAs production. This review focuses on properties and therapeutic applications of mycosporine like amino acids derived from microalgae. Further attention is drawn on various culture and genetic engineering approaches to enhance the MAAs production in microalgae.
Plants do not grow in isolation; they interact with diverse microorganisms in their habitat. The development of techniques to identify and quantify the microbial diversity associated with plants contributes to our understanding of the complexity of environmental influences to which plants are exposed. Identifying interactions which are beneficial to plants can enable us to promote healthy growth with the minimal application of agrochemicals. Beneficial plant–microbial interactions assist plants in acquiring inaccessible nutrients to promote plant growth and help them to cope with various stresses and pathogens. An increased knowledge of plant–microbial diversity can be applied to meet the growing demand for biofertilizers for use in organic agriculture. This review highlights the beneficial effects of soil–microbiota and biofertilizers on improving plant health and crop yields. We propose that a multi–omics approach is appropriate to evaluate viability in the context of sustainable agriculture.
Plastic has become one of the most crucial requirements of the modern-day living. The continuous reliance on the petroleum-based, non-biodegradable plastics has resulted in increased global environmental damage and rapid depletion of fossil fuels. Bioplastic, with remarkably similar properties to petroleum-based plastics is a promising alternative to overcome these emerging challenges. Despite the fact that algae and cyanobacteria are feasible alternative source for bio-plastic, there have been limited studies on strain selection and optimization of culture conditions for the bio plastic production. Naturally, algae and cynobacteria can accumulate higher amount of metabolites under stress conditions however one of the recent study on genetic engineering of Synechocystis sp. coupled with abiotic stresses showed up to 81% of increase in PHB level in the transformed lines. This chapter provides summary of various studies done in the field of algal bio-plastics, including bioplastic properties, genetic engineering, current regulatory framework and future prospects of bioplastic. Further the applications of bioplastics in industrial sector as well as opportunities and role of bio plastic in green economy are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.