Human activity recognition from video sequences has emerged recently as pivotal research area due to its importance in a large number of applications such as real-time surveillance monitoring, healthcare, smart homes, security, behavior analysis, and many more. However, lots of challenges also exist such as intra-class variations, object occlusion, varying illumination condition, complex background, camera motion, etc. In this work, we introduce a novel feature descriptor based on the integration of magnitude and orientation information of optical flow and histogram of oriented gradients which gives an efficient and robust feature vector for the recognition of human activities for real-world environment. In the proposed approach first we computed magnitude and orientation of the optical flow separately then a local-oriented histogram of magnitude and orientation of motion flow vectors are computed using histogram of oriented gradients followed by linear combination feature fusion strategy. The resultant features are then processed by a multiclass Support Vector Machine (SVM) classifier for activity recognition. The experimental results are performed over different publically available benchmark video datasets such as UT interaction, CASIA, and HMDB51 datasets. The effectiveness of the proposed approach is evaluated in terms of six different performance parameters such as accuracy, precision, recall, specificity, [Formula: see text]-measure, and Matthew’s correlation coefficient (MCC). To show the significance of the proposed method, it is compared with the other state-of-the-art methods. The experimental result shows that the proposed method performs well in comparison to other state-of-the-art methods.
Segmenting object from a moving camera is a challenging task due to varying background. When camera and object both are moving, then object segmentation becomes more difficult and challenging in video segmentation. In this paper, we introduce an efficient approach to segment object in moving camera scenario. In this work, first step is to stabilize the consecutive frame changes by the global camera motion and then to model the background, non-panoramic background modeling technique is used. For moving pixel identification of object, a motion-based approach is used to resolve the problem of wrong classification of motionless background pixel as foreground pixel. Motion vector has been constructed using dense flow to detect moving pixels. The quantitative performance of the proposed method has been calculated and compared with the other state-of-the-art methods using four measures, such as average difference (AD), structural content (SC), Jaccard coefficients (JC), and mean squared error (MSE).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.