Dietary inclusion of herbal components in animalfeed is gaining interest due to the reduction of some antibiotic use to decrease drug resistance. Obtaining such products relies on their culture or gathering in a wild environment. Nowadays, pesticide use in agriculture is increasing despite different concerns about public health. The present study provides a pesticide residue assessment of herbal components dedicated to feed additive production. A total of 92 samples of different herbal components were analyzed by three private accredited institutions, PRIMORIS (Belgium), PHYTOCONTROL (France) and EUROFINS (France). These analyses were performed by using gas chromatography tandem mass spectrometry (GC-MS/MS) and liquid chromatography tandem mass spectrometry (LC-MS/MS) methods. Data revealed the presence of residues in 63% of the samples with 10% more than the European Maximum Residue Levels (MRLs). Both herbal components, from wild or culture systems, were contaminated in our samples, respectively 65% and 60%. Wild plants from preserved areas such as the Amazonia forest were found to be surprisingly contaminated. In addition to the detection of pesticides in all countries investigated from various continents, 45% of pesticides were not approved by the European Union Commission. This study provides useful information about plantbased additives by giving awareness to all companies involved in this activity. Despite the low incorporation rate of these additives in feed, a regular monitoring strategy should be developed within each company to ensure safe food for consumers at the top level of the food chain.
Dietary inclusion of herbal components in animal feed is gaining interest due to the reduction of some antibiotic use to decrease drug resistance. Obtaining such products relies on their culture or gathering in a wild environment. Nowadays, pesticide use in agriculture is increasing despite different concerns about public health. The present study provides a pesticide residue assessment of herbal components dedicated to feed additive production. A total of 92 samples of different herbal components were analyzed by three private accredited institutions, PRIMORIS (Belgium), PHYTOCONTROL (France) and EUROFINS (France). These analyses were performed by using gas chromatography tandem mass spectrometry (GC-MS/MS) and liquid chromatography tandem mass spectrometry (LC-MS/MS) methods. Data revealed the presence of residues in 63% of the samples with 10% more than the European Maximum Residue Levels (MRLs). Both herbal components, from wild or culture systems, were contaminated in our samples, respectively 65% and 60%. Wild plants from preserved areas such as the Amazonia forest were found to be surprisingly contaminated. In addition to the detection of pesticides in all countries investigated from various continents, 45% of pesticides were not approved by the European Union Commission. This study provides useful information about plant based additives by giving awareness to all companies involved in this activity. Despite the low incorporation rate of these additives in feed, a regular monitoring strategy should be developed within each company to ensure safe food for consumers at the top level of the food chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.