Equiatomic, face-centered-cubic, high-and medium-entropy alloys were arc melted, hot-rolled to produce recrystallized sheets, and tensile tested. The alloys having the compositions CrMnFeCoNi and CrFeCoNi exhibited a strong temperature-dependent decrease in strength with increasing temperature from À196 C to 1000 C, and a relatively weak strain-rate dependence (at 10 À3 and 10 À1 s À1). Ductility did not vary inversely with yield strength; rather, when strength doubled as the test temperature was decreased from room temperature to À196 C, elongation to fracture increased by a factor of 1.5 to >60%. A high degree of work hardening, possibly due to deformation-induced nanotwinning, postpones the onset of necking and may be the reason for the ductility increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.