Because of various disadvantages of chemical synthesis processes, these days people are attracting towards green synthesis processes as it is devoid of toxic by-products, cost-effective and eco-friendly. In this study, a simple green synthesis method is applied for the synthesis of magnetite (Fe 3 O 4) nanoparticles (MNPs) by co-precipitation of FeCl 3 •6H 2 O and FeSO 4 •7H 2 O in the molar ratio of 2:1 using Azadirachta indica leaves extract under nitrogen environment. FTIR, XRD, SEM etc. were used to characterize the synthesized MNPs. Batch adsorption experiments were carried out to determine adsorption equilibrium of As(V) as a function of pH, adsorbent dose, contact time and different initial concentrations. Kinetics results were best described by pseudo-second order model with rate constant value 0.0052 g/(mg•min). The equilibrium adsorption isotherm was best fitted with Langmuir adsorption isotherm model. The maximum adsorption capacity was found to be 62.89 mg/g at pH 2. MNPs showed a high affinity for As(V) and avoids filtration for solid-liquid separation, thus it would be employed as a promising material for the removal of As(V) from water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.