In this paper, we present sintering and uniaxial viscosity data of three commercial low-temperature co-sintered ceramic systems, i.e., DuPont 951Tape (DU), Heraeus CT2000 (CT), and Ferro A6M (FE), measured by cyclic loading dilatometry. The viscosity initially decreases with temperature, changes little during the intermediate stage, and increases towards the end of densification. The viscosity increases sharply beyond the onset of crystallization. At slower heating rates, the viscosity increases at lower temperature, because of densification and crystallization. The isothermal viscosity data range from 0.1 to 100 GPa . s between 73% and 95% density. Ceramic particle-filled glasses show a higher isothermal viscosity compared with pure glass system, i.e., FE. From master viscosity curves based on isothermal data, the activation energies for viscous flow were B375730 and 450710 kJ/mol for DU and FE, respectively. These energies are comparable to values obtained from the master sintering curve approach.
This paper discusses the effect of uniaxial compressive stress and pressureless constraint on the microstructure, density, and shrinkage anisotropy during the sintering of two commercial low-temperature co-fired ceramic (LTCC) systems, i.e., Heraeus CT2000 (CT) and DuPont 951Tape (DU). Under uniaxial compression, the ratio of axial to transverse shrinkage of DU is significantly higher than that of CT. A simple linear viscous theory was used to estimate the change in the strain rates produced by the external stress and the stress required to produce zero shrinkage. The theory was found to overestimate the measured stress-induced strain rates. The uniaxial compressive stress required for zero overall shrinkage was estimated to be B60 kPa for DU and 80 kPa for CT. The estimate for the DU materials was in good agreement with the experimental data, but there was significant deviation for the CT material. Higher viscosity and higher constraining stresses led to lower densities in pressure-less constrained CT specimens compared with DU.
1923J ournal
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.