The computerized treatment planning system plays a major role in radiation therapy in delivering correct radiation dose to the patients within ±5% as recommended by the ICRU. To evaluate the dosimetric performance of the Treatment Planning system (TPS) with three-dimensional dose calculation algorithm using the basic beam data measured for 6 MV X-rays. Eleven numbers of test cases were created according to the Technical Report Series-430 (TRS 430) and are used to evaluate the TPS in a homogeneous water phantom. These cases involve simple field arrangements as well as the presence of a low-density material in the beam to resemble an air in-homogeneity. Absolute dose measurements were performed for the each case with the MU calculation given by the TPS, and the measured dose is compared with the corresponding TPS calculated dose values. The result yields a percentage difference maximum of 2.38% for all simple test cases. For complex test cases in the presence of in-homogeneity, beam modifiers or beam modifiers with asymmetric fields a maximum percentage difference of 5.94% was observed. This study ensures that the dosimetric calculations performed by the TPS are within the accuracy of ±5% which is very much warranted in patient dose delivery. The test procedures are simple, not only during the installation of TPS, but also repeated at periodic intervals.
The 4 MV photon beam offers equal build-up region behavior like Co-60 beam and it plays a major role in head and neck and pediatric radiotherapy. In this study an attempt is made to study the head scatter factor (S C ) for 4 MV photon beam using locally designed PMMA and Brass miniphantoms. The S C is measured in combination of PMMA miniphantom with 0.6 cc chamber and Brass miniphantom with 0.6 cc and 0.13 cc chambers. The measured S C is compared with the literature data and it agrees within 61.98%. The study reveals that either 0.13 cc or 0.6 cc chamber with PMMA or Brass phantom materials can be used for S C measurements in a 4 MV photon beam. The variation of SSD does not alter the head scatter factor. The collimator exchange effect is found to be within 1, and it is less than that of other linear accelerators. It is also found that the presence of internal wedge has significant contribution to head scatter factor. The Phantom scatter factor is also calculated and it agrees within 61% with published data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.