We consider a windowed decoding scheme for LDPC convolutional codes that is based on the belief-propagation (BP) algorithm. We discuss the advantages of this decoding scheme and identify certain characteristics of LDPC convolutional code ensembles that exhibit good performance with the windowed decoder. We will consider the performance of these ensembles and codes over erasure channels with and without memory. We show that the structure of LDPC convolutional code ensembles is suitable to obtain performance close to the theoretical limits over the memoryless erasure channel, both for the BP decoder and windowed decoding. However, the same structure imposes limitations on the performance over erasure channels with memory.
Abstract-We propose a new write channel model for bitpatterned media recording that reflects the data dependence of write synchronization errors. It is shown that this model accommodates both substitution-like errors and insertion-deletion errors whose statistics are determined by an underlying channel state process. We study information theoretic properties of the write channel model, including the capacity, symmetric information rate, Markov-1 rate and the zero-error capacity.Index Terms-Bit-patterned media, High-density magnetic recording, Channel capacity, Symmetric information rate, Markov-1 rate, Zero-error capacity.
Spatially coupled codes have been of interest recently owing to their superior performance over memoryless binary-input channels. The performance is good both asymptotically, since the belief propagation thresholds approach the Shannon limit, as well as for finite lengths, since degree-2 variable nodes that result in high error floors can be completely avoided. However, to realize the promised good performance, one needs large blocklengths. This in turn implies a large latency and decoding complexity. For the memoryless binary erasure channel, we consider the decoding of spatially coupled codes through a windowed decoder that aims to retain many of the attractive features of belief propagation, while trying to reduce complexity further. We characterize the performance of this scheme by defining thresholds on channel erasure rates that guarantee a target erasure rate. We give analytical lower bounds on these thresholds and show that the performance approaches that of belief propagation exponentially fast in the window size. We give numerical results including the thresholds computed using density evolution and the erasure rate curves for finite-length spatially coupled codes.
We study windowed decoding of spatially coupled codes when the transmission occurs over the binary erasure channel. We characterize the performance of this scheme by defining thresholds on channel erasure rates that guarantee a target bit erasure rate. We give analytical lower bounds on these thresholds and show that the performance approaches that of belief propagation exponentially fast in the window size. We give numerical results including the thresholds computed using density evolution and the erasure rate curves for finite-length spatially coupled codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.