Abstract-Dexterous multi-fingered hands are extremely versatile and provide a generic way to perform a multitude of tasks in human-centric environments. However, effectively controlling them remains challenging due to their high dimensionality and large number of potential contacts. Deep reinforcement learning (DRL) provides a model-agnostic approach to control complex dynamical systems, but has not been shown to scale to highdimensional dexterous manipulation. Furthermore, deployment of DRL on physical systems remains challenging due to sample inefficiency. Consequently, the success of DRL in robotics has thus far been limited to simpler manipulators and tasks. In this work, we show that model-free DRL can effectively scale up to complex manipulation tasks with a high-dimensional 24-DoF hand, and solve them from scratch in simulated experiments. Furthermore, with the use of a small number of human demonstrations, the sample complexity can be significantly reduced, which enables learning with sample sizes equivalent to a few hours of robot experience. The use of demonstrations result in policies that exhibit very natural movements and, surprisingly, are also substantially more robust. We demonstrate successful policies for object relocation, in-hand manipulation, tool use, and door opening, which are shown in the supplementary video.
Dexterous multi-fingered robotic hands can perform a wide range of manipulation skills, making them an appealing component for general-purpose robotic manipulators. However, such hands pose a major challenge for autonomous control, due to the high dimensionality of their configuration space and complex intermittent contact interactions. In this work, we propose deep reinforcement learning (deep RL) as a scalable solution for learning complex, contact rich behaviors with multi-fingered hands. Deep RL provides an end-to-end approach to directly map sensor readings to actions, without the need for task specific models or policy classes. We show that contact-rich manipulation behavior with multi-fingered hands can be learned by directly training with model-free deep RL algorithms in the real world, with minimal additional assumption and without the aid of simulation. We learn a variety of complex behaviors on two different low-cost hardware platforms. We show that each task can be learned entirely from scratch, and further study how the learning process can be further accelerated by using a small number of human demonstrations to bootstrap learning. Our experiments demonstrate that complex multi-fingered manipulation skills can be learned in the real world in about 4-7 hours for most tasks, and that demonstrations can decrease this to 2-3 hours, indicating that direct deep RL training in the real world is a viable and practical alternative to simulation and model-based control. https://sites.google.com/view/ deeprl-handmanipulation
Sample complexity and safety are major challenges when learning policies with reinforcement learning for real-world tasks, especially when the policies are represented using rich function approximators like deep neural networks. Model-based methods where the real-world target domain is approximated using a simulated source domain provide an avenue to tackle the above challenges by augmenting real data with simulated data. However, discrepancies between the simulated source domain and the target domain pose a challenge for simulated training. We introduce the EPOpt algorithm, which uses an ensemble of simulated source domains and a form of adversarial training to learn policies that are robust and generalize to a broad range of possible target domains, including unmodeled effects. Further, the probability distribution over source domains in the ensemble can be adapted using data from target domain and approximate Bayesian methods, to progressively make it a better approximation. Thus, learning on a model ensemble, along with source domain adaptation, provides the benefit of both robustness and learning/adaptation.
We introduce a framework that abstracts Reinforcement Learning (RL) as a sequence modeling problem. This allows us to draw upon the simplicity and scalability of the Transformer architecture, and associated advances in language modeling such as GPT-x and BERT. In particular, we present Decision Transformer, an architecture that casts the problem of RL as conditional sequence modeling. Unlike prior approaches to RL that fit value functions or compute policy gradients, Decision Transformer simply outputs the optimal actions by leveraging a causally masked Transformer. By conditioning an autoregressive model on the desired return (reward), past states, and actions, our Decision Transformer model can generate future actions that achieve the desired return. Despite its simplicity, Decision Transformer matches or exceeds the performance of state-of-the-art model-free offline RL baselines on Atari, OpenAI Gym, and Key-to-Door tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.