Interaction between road users is a societally important special case of human interaction, and a better understanding of such interactions is a key missing enabler for wide deployment of automated vehicles. Empirical studies implicate a variety of cognitive mechanisms, but these are studied and modeled in separate subfields of psychology. Here, we show how a range of these existing computational theories can be integrated into a single modeling framework, and demonstrate that to reproduce a set of well-established empirical phenomena in driver-pedestrian interaction, substantial theoretical unification of this nature is needed. Our results demonstrate the feasibility and value of large-scale integration of psychological theory, and underscore the formidable complexity of road user interaction, with strong implications for both mechanistic and machine-learned approaches to vehicle automation.
When humans share space in road traffic, as drivers or as vulnerable road users, they draw on their full range of communicative and interactive capabilities. Much remains unknown about these behaviors, but they need to be captured in models if automated vehicles are to coexist successfully with human road users. Empirical studies of human road user behavior implicate a large number of underlying cognitive mechanisms, which taken together are well beyond the scope of existing computational models. Here, we note that for all of these putative mechanisms, computational theories exist in different subdisciplines of psychology, for more constrained tasks. We demonstrate how these separate theories can be generalized from abstract laboratory paradigms and integrated into a computational framework for modeling human road user interaction, combining Bayesian perception, a theory of mind regarding others’ intentions, behavioral game theory, long-term valuation of action alternatives, and evidence accumulation decision-making. We show that a model with these assumptions—but not simpler versions of the same model—can account for a number of previously unexplained phenomena in naturalistic driver–pedestrian road-crossing interactions, and successfully predicts interaction outcomes in an unseen data set. Our modeling results contribute to demonstrating the real-world value of the theories from which we draw, and address calls in psychology for cumulative theory-building, presenting human road use as a suitable setting for work of this nature. Our findings also underscore the formidable complexity of human interaction in road traffic, with strong implications for the requirements to set on development and testing of vehicle automation.
In this study, we describe two techniques to enable hapticguided teleoperation using 7-DoF cobot arms as master and slave devices. A shortcoming of using cobots as master-slave systems is the lack of force feedback at the master side. However, recent developments in cobot technologies have brought in affordable, flexible, and safe torquecontrolled robot arms, which can be programmed to generate force feedback to mimic the operation of a haptic device. In this study, we use two Franka Emika Panda robot arms as a twin master-slave system to enable haptic-guided teleoperation. We propose a two layer mechanism to implement force feedback due to 1) object interactions in the slave workspace, and 2) virtual forces, e.g. those that can repel from static obstacles in the remote environment or provide task-related guidance forces. We present two different approaches for force rendering and conduct an experimental study to evaluate the performance and usability of these approaches in comparison to teleoperation without haptic guidance. Our results indicate that the proposed joint torque coupling method for rendering task forces improves energy requirements during haptic guided telemanipulation, providing realistic force feedback by accurately matching the slave torque readings at the master side.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.