Recently In has been considered as an additional alloying element in Sn-rich solders primarily due to its abilities to decrease the solder melting temperature and to modify mechanical properties and microstructure. While In is an attractive candidate for addition to solder, its effect on solder microstructure is not well understood. In order to study the effect of minor In additions on Snrich solder alloys, solder joints were prepared using Sn-0.7 wt.% Cu and Sn-0.7 wt.% Cu-< 1 wt.% In alloys. Thermal aging and electromigration testing were done, followed by post-mortem microstructure characterization including composition, morphology, and grain structure. The addition of In did not appear to affect the microstructure under thermal aging conditions, but slowed interfacial intermetallic growth under electromigration, particularly of the compound Cu 6 Sn 5 . Transmission electron microscope analysis revealed the formation of Cu 7 In 3 IMC nanoparticles, which were semicoherent with the surrounding Sn matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.