We present Samanantar, the largest publicly available parallel corpora collection for Indic languages. The collection contains a total of 49.7 million sentence pairs between English and 11 Indic languages (from two language families). Specifically, we compile 12.4 million sentence pairs from existing, publicly available parallel corpora, and additionally mine 37.4 million sentence pairs from the Web, resulting in a 4× increase. We mine the parallel sentences from the Web by combining many corpora, tools, and methods: (a) Web-crawled monolingual corpora, (b) document OCR for extracting sentences from scanned documents, (c) multilingual representation models for aligning sentences, and (d) approximate nearest neighbor search for searching in a large collection of sentences. Human evaluation of samples from the newly mined corpora validate the high quality of the parallel sentences across 11 languages. Further, we extract 83.4 million sentence pairs between all 55 Indic language pairs from the English-centric parallel corpus using English as the pivot language. We trained multilingual NMT models spanning all these languages on Samanantar which outperform existing models and baselines on publicly available benchmarks, such as FLORES, establishing the utility of Samanantar. Our data and models are available publicly at Samanantar and we hope they will help advance research in NMT and multilingual NLP for Indic languages.
We present Samanantar, the largest publicly available parallel corpora collection for Indic languages. The collection contains a total of 46.9 million sentence pairs between English and 11 Indic languages (from two language families). In particular, we compile 12.4 million sentence pairs from existing, publiclyavailable parallel corpora, and we additionally mine 34.6 million sentence pairs from the web, resulting in a 2.8× increase in publicly available sentence pairs. We mine the parallel sentences from the web by combining many corpora, tools, and methods. In particular, we use (a) web-crawled monolingual corpora, (b) document OCR for extracting sentences from scanned documents (c) multilingual representation models for aligning sentences, and (d) approximate nearest neighbor search for searching in a large collection of sentences. Human evaluation of samples from the newly mined corpora validate the high quality of the parallel sentences across 11 language pairs. Further, we extracted 82.7 million sentence pairs between all 55 Indic language pairs from the English-centric parallel corpus using English as the pivot language. We trained multilingual NMT models spanning all these languages on Samanantar and compared with other baselines and previously reported results on publicly available benchmarks. Our models outperform existing models on these benchmarks, establishing the utility of Samanantar. Our data and models will be available publicly 1 and we hope they will help advance research in Indic NMT and multilingual NLP for Indic languages.
We present the largest publicly available synthetic OCR benchmark dataset for Indic languages. The collection contains a total of 90k images and their ground truth for 23 Indic languages. OCR model validation in Indic languages require a good amount of diverse data to be processed in order to create a robust and reliable model. Generating such a huge amount of data would be difficult otherwise but with synthetic data, it becomes far easier. It can be of great importance to fields like Computer Vision or Image Processing where once an initial synthetic data is developed, model creation becomes easier. Generating synthetic data comes with the flexibility to adjust its nature and environment as and when required in order to improve the performance of the model. Accuracy for labeled real-time data is sometimes quite expensive while accuracy for synthetic data can be easily achieved with a good score.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.