In recent times, data are generated as a form of continuous data streams in many applications. Since handling data streams is necessary and discovering knowledge behind data streams can often yield substantial benefits, mining over data streams has become one of the most important issues. Many approaches for mining frequent itemsets over data streams have been proposed. These approaches often consist of two procedures including continuously maintaining synopses for data streams and finding frequent itemsets from the synopses. However, most of the approaches assume that the synopses of data streams can be saved in memory and ignore the fact that the information of the non-frequent itemsets kept in the synopses may cause memory utilization to be significantly degraded. In this paper, we consider compressing the information of all the itemsets into a structure with a fixed size using a hash-based technique. This hash-based approach skillfully summarizes the information of the whole data stream by using a hash table, provides a novel technique to estimate the support counts of the non-frequent itemsets, and keeps only the frequent itemsets for speeding up the mining process. Therefore, the goal of optimizing memory space utilization can be achieved. The correctness guarantee, error analysis, and parameter setting of this approach are presented and a series of experiments is performed to show the effectiveness and the efficiency of this approach.Responsible editor: M.J. Zaki.
Querying polyphonic music from a large data collection is an interesting and challenging topic. Recently, researchers attempt to provide efficient techniques for content-based retrieval in polyphonic music databases where queries can also be polyphonic. However, most of the techniques do not perform the approximate matching well. In this paper, we present a novel method to efficiently retrieve k music works that contain segments most similar to the user query based on the edit distance. A list-based index structure is first constructed using the feature of the polyphony. A set of candidate approximate answers is then generated for the user query. A lower bounding mechanism is proposed to prune these candidates such that the k answers can be obtained efficiently. The efficiency of the proposed method is evaluated by real data set and synthetic data set, reporting significant improvement over existing approaches in the response time yielded.
Mining frequent itemsets over data streams has attracted much research attention in recent years. In the past, we had developed a hash-based approach for mining frequent itemsets over a single data stream. In this paper, we extend that approach to mine global frequent itemsets from a collection of data streams distributed at distinct remote sites. To speed up the mining process, we make the first attempt to address a new problem on continuously maintaining a global synopsis for the union of all the distributed streams. The mining results therefore can be yielded on demand by directly processing the maintained global synopsis. Instead of collecting and processing all the data in a central server, which may waste the computation resources of remote sites, distributed computations over the data streams are performed. A distributed computation framework is proposed in this paper, including two communication strategies and one merging operation. These communication strategies are designed according to an accuracy guarantee of the mining results, determining when and what the remote sites should transmit to the central server (named coordinator). On the other hand, the merging operation is exploited to merge the information received from the remote sites into the global synopsis maintained at the coordinator. By the strategies and operation, the goal of continuously maintaining the global synopsis can be achieved. Rooted in the continuously maintained global synopsis, we propose a mining algorithm for finding Responsible editor: M.J. Zaki. 123Mining frequent itemsets 253 global frequent itemsets. Moreover, the correctness guarantees of the communication strategies and merging operation, and the accuracy guarantee analysis of the mining algorithm are provided. Finally, a series of experiments on synthetic datasets and a real dataset are performed to show the effectiveness and efficiency of the distributed computation framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.