This paper describes refinements to the hybrid broadband ground motion simulation methodology of Graves and Pitarka (2004), which combines a deterministic approach at low frequencies (f < 1 Hz) with a semi-stochastic approach at high frequencies (f > 1 Hz). In our approach, fault rupture is represented kinematically and incorporates spatial heterogeneity in slip, rupture speed and rise time. The prescribed slip distribution is constrained to follow an inverse wavenumber-squared falloff and the average rupture speed is set at 80% of the local shear wave velocity, which is then adjusted such that the rupture propagates faster in regions of high slip, and slower in regions of low slip. We use a Kostrov-like slip-rate function having a rise time proportional to the square root of slip, with the average rise time across the entire fault constrained empirically. Recent observations from large surface rupturing earthquakes indicate a reduction of rupture propagation speed and lengthening of rise time in the near surface, which we model by applying a 70% reduction of the rupture speed and increasing the rise time by a factor of 2 in a zone extending from the surface to a depth of 5 km. We demonstrate the fidelity of the technique by modeling the strong motion recordings from the Imperial Valley, Loma Prieta, Landers, and Northridge earthquakes.
We propose a model for the effect of sedimentary basin depth on long-period response spectra. The model is based on the analysis of 3-D numerical simulations (finite element and finite difference) of long-period (2–10 s) ground motions for a suite of sixty scenario earthquakes (Mw 6.3 to Mw 7.1) within the Los Angeles basin region. We find depth to the 1.5 km/s S-wave velocity isosurface to be a suitable predictor variable, and also present alternative versions of the model based on depths to the 1.0 and 2.5 km/s isosurfaces. The resulting mean basin-depth effect is period dependent, and both smoother (as a function of period and depth) and higher in amplitude than predictions from local 1-D models. The main requirement for the use of the results in construction of attenuation relationships is determining the extent to which the basin effect, as defined and quantified in this study, is already accounted for implicitly in existing attenuation relationships, through (1) departures of the average “rock” site from our idealized reference model, and (2) correlation of basin depth with other predictor variables (such as V s30).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.