The objective of this study was to measure the impacts of summer heat events on physiological parameters (body temperature, respiratory rate and panting scores), grazing behaviour and production parameters of lactating Holstein Friesian cows managed on an Automated Robotic Dairy during Australian summer. The severity of heat stress was measured using Temperature-Humidity Index (THI) and impacts of different THIs—low (≤72), moderate (73–82) and high (≥83)—on physiological responses and production performance were measured. There was a highly significant (p ≤ 0.01) effect of THI on respiratory rate (66.7, 84.7 and 109.1/min), panting scores (1.4, 1.9 and 2.3) and average body temperature of cows (38.4, 39.4 and 41.5 °C), which increased as THI increased from low to moderate to high over the summer. Average milk production parameters were also significantly (p ≤ 0.01) affected by THI, such that daily milk production dropped by 14% from low to high THI, milk temperature and fat% increased by 3%, whilst protein% increased by 2%. The lactation stage of cow had no significant effect on physiological parameters but affected (p ≤ 0.05) average daily milk yield and milk solids. Highly significant (p ≤ 0.01) positive correlations were obtained between THI and milk temperature, fat% and protein% whilst the reverse was observed between THI and milk yield, feed intake and rumination time. Under moderate and high THI, most cows sought shade, spent more time around watering points and showed signs of distress (excessive salivation and open mouth panting). In view of the expected future increase in the frequency and severity of heat events, additional strategies including selection and breeding for thermotolerance and dietary interventions to improve resilience of cows need to be pursued.
The objective of this study was to compare the thermotolerance of second-cross (SC; Poll Dorset × Merino × Border Leicester) and Dorper lambs. Dorper and SC lambs (4–5 months of age) were subjected to cyclic heat stress (HS) (28–40 °C). The temperature was increased to 38–40 °C between 800 and 1700 h daily and maintained at 28 °C for the remainder of the day (30–60% relative humidity (RH)) in climatic chambers for 2 weeks (n = 12/group), with controls maintained in a thermoneutral (TN) (18–21 °C, 40–50% RH) environment (n = 12/group). Basal respiration rate (RR), rectal temperature (RT) and skin temperature (ST) were higher (p < 0.01) in SC lambs than in Dorpers. HS increased RR, RT and ST (p < 0.01) in both genotypes, but the levels reached during HS were lower (p < 0.01) in Dorpers. HS increased (p < 0.01) water intake to a greater extent in SC lambs, while feed intake was reduced (p < 0.05) by HS in SC lambs but not in Dorpers. HS increased (p < 0.01) blood urea nitrogen and creatinine in SC lambs only. Plasma non-esterified fatty acid concentrations were reduced (p < 0.05) by HS in SC lambs but increased (p < 0.05) in Dorpers. There was no effect of HS on pO2, cHCO3− and cSO2, but higher (p < 0.01) blood pH and lower (p < 0.01) pCO2 were recorded under HS in both genotypes. Blood electrolytes and base excess were reduced (p < 0.01) under HS, while a genotype difference (p < 0.05) was only observed in blood K+ and hemoglobin concentrations. Basal plasma prolactin concentrations were lower (p < 0.01) in Dorpers but were elevated at a similar level during HS (p < 0.01) in both genotypes. Dorper lambs are more resilient to HS than SC lambs. Future research should focus on confirming whether the better heat tolerance of Dorpers is translated to better returns in terms of growth performance and carcass traits over the summer months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.