Elucidating the design principles of regulatory networks driving cellular decision-making has fundamental implications in mapping and eventually controlling cell-fate decisions. Despite being complex, these regulatory networks often only give rise to a few phenotypes. Previously, we identified two 'teams' of nodes in a small cell lung cancer regulatory network that constrained the phenotypic repertoire and aligned strongly with the dominant phenotypes obtained from network simulations (Chauhan et al., 2021). However, it remained elusive whether these 'teams' exist in other networks, and how do they shape the phenotypic landscape. Here, we demonstrate that five different networks of varying sizes governing epithelial-mesenchymal plasticity comprised of two 'teams' of players - one comprised of canonical drivers of epithelial phenotype and the other containing the mesenchymal inducers. These 'teams' are specific to the topology of these regulatory networks and orchestrate a bimodal phenotypic landscape with the epithelial and mesenchymal phenotypes being more frequent and dynamically robust to perturbations, relative to the intermediary/hybrid epithelial/ mesenchymal ones. Our analysis reveals that network topology alone can contain information about corresponding phenotypic distributions, thus obviating the need to simulate them. We propose 'teams' of nodes as a network design principle that can drive cell-fate canalization in diverse decision-making processes.
Elucidating the principles of cellular decision-making is of fundamental importance. These decisions are often orchestrated by underlying regulatory networks. While we understand the dynamics of simple network motifs, how do large networks lead to a limited number of phenotypes, despite their complexity, remains largely elusive. Here, we investigate five different networks governing epithelial-mesenchymal plasticity and identified a latent design principles in their topology that limits their phenotypic repertoire - the presence of two 'teams' of nodes engaging in a mutually inhibitory feedback loop, forming a toggle switch. These teams are specific to these networks and directly shape the phenotypic landscape and consequently the frequency and stability of terminal phenotypes vs. the intermediary ones. Our analysis reveals that network topology alone can contain information about phenotypic distributions it can lead to, thus obviating the need to simulate them. We unravel topological signatures that can drive canalization of cell-fates during diverse decision-making processes.
Undergraduate research is an important component of a B.Tech. Biotechnology program. In the present study, a customizable approach designed with open-source bioinformatics tools and databases was introduced to predict siRNAs for ZIKV therapeutics. With minimal prior exposure to bioinformatics, this workflow can be executed with detailed steps as demonstrated in this paper. All software, databases, and servers used in this research are opensource, allowing this project-based learning methodology to be implemented remotely as well. The workflow designed in the present study is flexible and customizable according to the mentor and student's requirements.
Background Frontotemporal dementia (FTD) is the second most common type of dementia in individuals aged below 65 years with no current cure. Current treatment plan is the administration of multiple medications. This has the issue of causing adverse effects due to unintentional drug–drug interactions. Therefore, there exists an urgent need to propose a novel targeted therapy that can maximize the benefits of FTD-specific drugs while minimizing its associated adverse side effects. In this study, we implemented the concept of network pharmacology to understand the mechanism underlying FTD and highlight specific drug–gene and drug–drug interactions that can provide an interesting perspective in proposing a targeted therapy against FTD. Results We constructed protein–protein, drug–gene and drug–drug interaction networks to identify highly connected nodes and analysed their importance in associated enriched pathways. We also performed a historeceptomics analysis to determine tissue-specific drug interactions. Through this study, we were able to shed light on the APP gene involved in FTD. The APP gene which was previously known to cause FTD cases in a small percentage is now being extensively studied owing to new reports claiming its participation in neurodegeneration. Our findings strengthen this hypothesis as the APP gene was found to have the highest node degree and betweenness centrality in our protein–protein interaction network and formed an essential hub node between disease susceptibility genes and neuroactive ligand–receptors. Our findings also support the study of FTD being presented as a case of substance abuse. Our protein–protein interaction network highlights the target genes common to substance abuse (nicotine, morphine and cocaine addiction) and neuroactive ligand–receptor interaction pathways, therefore validating the cognitive impairment caused by substance abuse as a symptom of FTD. Conclusions Our study abandons the one-target one-drug approach and uses networks to define the disease mechanism underlying FTD. We were able to highlight important genes and pathways involved in FTD and analyse their relation with existing drugs that can provide an insight into effective medication management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.