STUDY QUESTION: Do the CRES (cystatin-related epididymal spermatogenic) subgroup members, including CRES2, CRES3 and cystatin E2, contribute to the formation of a nonpathological, functional amyloid matrix in the mouse epididymal lumen?SUMMARY ANSWER: CRES2, CRES3 and cystatin E2 self-assemble with different aggregation properties into amyloids in vitro, are part of a common amyloid matrix in the mouse epididymal lumen and are present in extracellular vesicles.WHAT IS KNOWN ALREADY: Although previously thought only to be pathological, accumulating evidence has established that amyloids, which are highly ordered protein aggregates, can also carry out functional roles in the absence of pathology. We previously demonstrated that nonpathological amyloids are present in the epididymis; specifically, that the reproductive cystatin CRES forms amyloid and is present in the mouse epididymal lumen in a film-like amyloid matrix that is intimately associated with spermatozoa. Because the related proteins CRES2, CRES3 and cystatin E2 are also expressed in the epididymis, the present studies were carried out to determine if these proteins are also amyloidogenic in vitro and in vivo and thus may coordinately function with CRES as an amyloid structure. STUDY DESIGN, SAMPLES/MATERIALS, METHODS:The epididymides from CD1 and Cst8 (CRES)129SvEv/B6 gene knockout (KO) and wild-type mice and antibodies that specifically recognize each CRES subgroup member were used for immunohistochemical and biochemical analyzes of CRES subgroup proteins. Methods classically used to identify amyloid, including the conformation-dependent dyes thioflavin S (ThS) and thioflavin T (ThT), conformation-dependent antibodies, protein aggregation disease ligand (which binds any amyloid independent of sequence) and negative stain electron microscopy (EM) were carried out to examine the amyloidogenic properties of CRES subgroup members. Immunofluorescence analysis and confocal microscopy were used for colocalization studies. MAIN RESULTS AND THE ROLE OF CHANCE:Immunoblot and immunofluorescence analyzes showed that CRES2, CRES3 and cystatin E2 were primarily found in the initial segment and intermediate zone of the epididymis and were profoundly downregulated in epididymides from CRES KO mice, suggesting integrated functions. Except for CRES3, which was only detected in a particulate form, proteins were present in the epididymal lumen in both soluble and particulate forms including in a film-like matrix and in extracellular vesicles. The use of amyloid-specific reagents determined that all CRES subgroup members were present as amyloids and colocalized to a common amyloid matrix present in the epididymal lumen. Negative stain EM, dot blot analysis and ThT plate assays showed that recombinant CRES2, CRES3 and cystatin E2 formed amyloid in vitro, albeit with different aggregation properties. Together, our studies demonstrate that a unique amyloid matrix composed of the CRES family of reproductive-specific cystatins and cystatin C is a normal component of the mouse ...
The zona pellucida (ZP) surrounding the oocyte is an extracellular fibrillar matrix that plays critical roles during fertilization including species-specific gamete recognition and protection from polyspermy. The mouse ZP is composed of three proteins, ZP1, ZP2, and ZP3, all of which have a ZP polymerization domain that directs protein fibril formation and assembly into the three-dimensional ZP matrix. Egg coats surrounding oocytes in nonmammalian vertebrates and in invertebrates are also fibrillar matrices and are composed of ZP domain-containing proteins suggesting the basic structure and function of the ZP/egg coat is highly conserved. However, sequence similarity between ZP domains is low across species and thus the mechanism for the conservation of ZP/egg coat structure and its function is not known. Using approaches classically used to identify amyloid including conformation-dependent antibodies and dyes, X-ray diffraction, and negative stain electron microscopy, our studies suggest the mouse ZP is a functional amyloid. Amyloids are cross-β sheet fibrillar structures that, while typically associated with neurodegenerative and prion diseases in mammals, can also carry out functional roles in normal cells without resulting pathology. An analysis of the ZP domain from mouse ZP3 and ZP3 homologs from five additional taxa using the algorithm AmylPred 2 to identify amyloidogenic sites, revealed in all taxa a remarkable conservation of regions that were predicted to form amyloid. This included a conserved amyloidogenic region that localized to a stretch of hydrophobic amino acids previously shown in mouse ZP3 to be essential for fibril assembly. Similarly, a domain in the yeast protein α-agglutinin/Sag 1p, that possesses ZP domain-like features and which is essential for mating, also had sites that were predicted to be amyloidogenic including a hydrophobic stretch that appeared analogous to the critical site in mouse ZP3. Together, these studies suggest that amyloidogenesis may be a conserved mechanism for ZP structure and function across billions of years of evolution.
Amyloids are traditionally considered pathological protein aggregates that play causative roles in neurodegenerative disease, diabetes and prionopathies. However, increasing evidence indicates that in many biological systems nonpathological amyloids are formed for functional purposes. In this review, we will specifically describe amyloids that carry out biological roles in sexual reproduction including the processes of gametogenesis, germline specification, sperm maturation and fertilization. Several of these functional amyloids are evolutionarily conserved across several taxa, including human, emphasizing the critical role amyloids perform in reproduction. Evidence will also be presented suggesting that, if altered, some functional amyloids may become pathological.
Background: We previously demonstrated the normal mouse epididymal lumen contains a non-pathological amyloid matrix that surrounds spermatozoa and plays important roles in sperm maturation and protection. Objective: The objective herein was to present a review of this work, including studies showing the amyloid structures of four members of the CRES (cystatin-related epididymal spermatogenic) subgroup are integral and essential components of the amyloid matrix. Methods: We used conformation-dependent reagents that recognize the cross-b-sheet structure characteristic of amyloid, including thioflavin S (ThS), thioflavin T (ThT), anti-amyloid antibodies, and X-ray diffraction, as well as negative-stain transmission electron microscopy (TEM) to visualize amyloid structures in the epididymal lumen. Antibodies that specifically detect each CRES subgroup family member were also used in indirect immunofluorescence analysis. Results and Discussion: The epididymal lumen contains an amyloid matrix that surrounds maturing spermatozoa and represents a functional amyloid. Alterations in the structure of the amyloid matrix by the loss of the CRES subgroup members or the overexpression of cystatin C result in epididymal pathologies, including infertility. Preliminary data suggest the epididymal amyloid matrix is structurally and functionally similar to bacterial biofilms. Conclusion: Together, these results suggest the amyloid matrix serves important roles in epididymal function including sperm maturation and protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.