Large datasets such as Cultural Heritage collections require detailed annotations when digitised and made available online. Annotating different aspects of such collections requires a variety of knowledge and expertise which is not always possessed by the collection curators. Artwork annotation is an example of a knowledge intensive image annotation task, i.e. a task that demands annotators to have domain-specific knowledge in order to be successfully completed. This paper describes the results of a study aimed at investigating the applicability of crowdsourcing techniques to knowledge intensive image annotation tasks. We observed a clear relationship between the annotation difficulty of an image, in terms of number of items to identify and annotate, and the performance of the recruited workers.
Abstract. Museums are rapidly digitizing their collections, and face a huge challenge to annotate every digitized artifact in store. Therefore they are opening up their archives for receiving annotations from experts world-wide. This paper presents an architecture for choosing the most eligible set of annotators for a given artifact, based on semantic relatedness measures between the subject matter of the artifact and topics of expertise of the annotators. We also employ mechanisms for evaluating the quality of provided annotations, and constantly manage and update the trust, reputation and expertise information of registered annotators.
Trust is a broad concept that in many systems is often reduced to user reputation alone. However, user reputation is just one way to determine trust. The estimation of trust can be tackled from other perspectives as well, including by looking at provenance. Here, we present a complete pipeline for estimating the trustworthiness of artifacts given their provenance and a set of sample evaluations. The pipeline is composed of a series of algorithms for (1) extracting relevant provenance features, (2) generating stereotypes of user behavior from provenance features, (3) estimating the reputation of both stereotypes and users, (4) using a combination of user and stereotype reputations to estimate the trustworthiness of artifacts, and (5) selecting sets of artifacts to trust. These algorithms rely on the W3C PROV recommendations for provenance and on evidential reasoning by means of subjective logic. We evaluate the pipeline over two tagging datasets: tags and evaluations from the Netherlands Institute for Sound and Vision’s Waisda? video tagging platform, as well as crowdsourced annotations from the Steve.Museum project. The approach achieves up to 85% precision when predicting tag trustworthiness. Perhaps more importantly, the pipeline provides satisfactory results using relatively little evidence through the use of provenance.
Abstract-Cultural heritage institutions and multimedia archives often delegate the task of annotating their collections of artifacts to Web users. The use of crowdsourced annotations from the Web gives rise to trust issues. We propose an algorithm that, by making use of a combination of subjective logic, semantic relatedness measures and clustering, automates the process of evaluation for annotations represented by means of the Open Annotation ontology. The algorithm is evaluated over two different datasets coming from the cultural heritage domain.
The results of our exploratory study provide new insights to crowdsourcing knowledge intensive tasks. We designed and performed an annotation task on a print collection of the Rijksmuseum Amsterdam, involving experts and crowd workers in the domain-specific description of depicted flowers. We created a testbed to collect annotations from flower experts and crowd workers and analyzed these in regard to user agreement. The findings show promising results, demonstrating how, for given categories, nichesourcing can provide useful annotations by connecting crowdsourcing to domain expertise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.