Numerous engineering and environmental issues can be resolved using the bacterial-induced calcite precipitation (BCP), which has the potential to be environmentally friendly, sustainable, and economical. In BCP, bacterial enzymes used substrates and divalent cations to bind negatively charged ions to the bacterial surface and produce biocementation. Various metabolic pathways involved in the calcite precipitation and ureolysis are the principal bacterial pathways that have been illustrated by most bacteria including Sporosarcina pasteurii, Bacillus subtilis, and Pseudomonas putida. Ammonia is produced by these bacteria, which is toxic and should be eliminated. Therefore, BCP via carbonic anhydrase could be a preferred option because the end-products are not toxic. The growing global requirement of ground improvement boosted the demand for biostabilization because of its numerous benefits, including environmental issues. Dust suppression, remediated soil contaminants, polychlorinated biphenyl calcium ions, and CO2 sequestration, proving that BCP is environmentally friendly and sustainable. Furthermore, for fine-grained soils having pores smaller than 0.5 μm, the enzyme-induced calcite that uses enzymes instead of bacteria is more suitable to stabilize the soil by precipitating the calcite. The use of BCP as binders for soil stability and strengthening, innovative construction materials, subsurface barriers, and impermeable crusts is an emerging field. Calcite precipitated in the pores increases strength more than 20 times, resulting in a significant reduction in compressibility. Similarly, reduced soil permeability to up to 99% broadens its applicability. This review argues that BCP can be induced by multiple approaches, including urease expressing bacteria and carbonic anhydrase expressing bacteria as well as free enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.