The increasing uptake of distributed energy resources (DERs) in distribution systems and the rapid advance of technology have established new scenarios in the operation of lowvoltage networks. In particular, recent trends in cryptocurrencies and blockchain have led to a proliferation of peer-to-peer (P2P) energy trading schemes, which allow the exchange of energy between the neighbors without any intervention of a conventional intermediary in the transactions. Nevertheless, far too little attention has been paid to the technical constraints of the network under this scenario. A major challenge to implementing P2P energy trading is that of ensuring that network constraints are not violated during the energy exchange. This paper proposes a methodology based on sensitivity analysis to assess the impact of P2P transactions on the network and to guarantee an exchange of energy that does not violate network constraints. The proposed method is tested on a typical UK low-voltage network. The results show that our method ensures that energy is exchanged between users under the P2P scheme without violating the network constraints, and that users can still capture the economic benefits of the P2P architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.