The extent to which dense and irreversible sickle cells (ISCs) contribute to vasoocclusive episodes in sickle cell disease remains unclear. N-Acetylcysteine (NAC) inhibits dense cell and ISC formation in sickle erythrocytes in vitro and restores glutathione levels toward normal. A phase II double-blind randomized clinical trial was completed to determine the efficacy of NAC in decreasing dense cell and ISC formation, and vasoocclusive episodes in sickle cell disease. Twenty-one subjects with a history of at least two vaso-occlusive episodes per year and 6% dense cells were enrolled. Four treatment groups were analyzed; NAC at a dose of 2,400 mg per day decreased the percent dense cells from 20.1 ± 2.9 to 12.6 ± 2.1 (P < 0.05) and increased red cell glutathione levels from 292.8 ± 74.5 to 576.7 ± 155.1 (P < 0.05). In addition, we observed a decrease in vasoocclusive episodes from 0.03 to 0.006 episodes per person-days and a decreased in relative risk to R = 0.39. Although NAC did not significantly decrease the number of ISCs, there was a downward trend at all doses tested. In summary, NAC inhibited dense cell formation, restored glutathione levels toward normal, and decreased vaso-occlusive episodes at a well-tolerated dose of 2,400 mg per day. To determine the long-term efficacy and safety of NAC, a multicenter phase III clinical trial is required. Am. J. Hematol. 73: 26-32, 2003.
Abstract. Irreversibly sickled cells (ISCs) remainsickled even under conditions where they are well oxygenated and hemoglobin is depolymerized. In our studies we demonstrate that triton extracted ISC core skeletons containing only spectrin, protein 4.1, and actin also retain their sickled shape; while reversibly sickled cell (RSC) skeletons remodel to a round or biconcave shape. We also demonstrate that these triton extracted ISC core skeletons dissociate more slowly upon incubation at 37°C than do RSC or control (AA) core skeletons. This observation may supply the basis for the inability of the ISC core skeleton to remodel its shape. Using an in vitro ternary complex dissociation assay, we demonstrate that a modification in /3-actin is the major determinant of the slow dissociation of the spectrin-protein 4.1-actin complex isolated from the ISC core skeleton. We demonstrate that the difference between ISC and control/3-actin is the inaccessibility of two cysteine residues in ISC ~/-actin to labeling by thiol reactive reagents; due to the formation of a disulfide bridge between cysteine TM and cysteine 373 in ISC/~-actin, or alternatively another modification of cysteine TM and cysteine 373 which is reversible with DTT and adds less than 100 D to the molecular weight of ~-actin.
BackgroundInfantile hemangiomas (IH) are the most common benign tumors of infancy. The typical clinical course consists of rapid growth during the first year of life, followed by natural and gradual involution over a multi-year time span through unknown cellular mechanisms. Some tumors respond to medical treatment with corticosteroids or beta-blockers, however, when this therapy fails or is incomplete, surgical extirpation may be necessary. Noninvasive therapies to debulk or eliminate these tumors would be an important advance. The development of an in vitro cell culture system and an animal model would allow new insights into the biological processes involved in the development and pathogenesis of IH.ResultsWe observed that proliferative stage IH specimens contain significantly more SALL4+ and CD133+ cells than involuting tumors, suggesting a possible stem cell origin. A tumor sphere formation assay was adapted to culture IH cells in vitro. Cells in IH tumor spheres express GLUT1, indicative of an IH cell of origin, elevated levels of VEGF, and various stem/progenitor cell markers such as SALL4, KDR, Oct4, Nanog and CD133. These cells were able to self-renew and differentiate to endothelial lineages, both hallmarks of tumor stem cells. Treatment with Rapamycin, a potent mTOR/VEGF inhibitor, dramatically suppressed IH cell growth in vitro. Subcutaneous injection of cells from IH tumor spheres into immunodeficient NOD-SCID mice produced GLUT1 and CD31 positive tumors with the same cellular proliferation, differentiation and involution patterns as human hemangiomas.ConclusionsThe ability to propagate large numbers of IH stem cells in vitro and the generation of an in vivo mouse model provides novel avenues for testing IH therapeutic agents in the future.
We have previously demonstrated that the membrane skeletons of irreversibly sickled cells (ISCs) dissociate more slowly at 37 degrees C, in high ionic strength Triton X-100 buffer, than do the membrane skeletons of reversibly sickled cells or control erythrocytes [Shartava et al. (1995) J. Cell. Biol. 128, 805-818]. Furthermore, we demonstrated that the major cause of this slow dissociation was a single posttranslational modification in ISC beta-actin. Two sulfhydryl groups (Cys284 and Cys373) became inaccessible to thiol reagents because of this modification. We suggested the possibility that the modification was a disulfide bridge between Cys284 and Cys373 since the reducing agent dithiothreitol restored the sulfhydryl groups. In this article, we directly demonstrate the existence of the disulfide bridge between cysteine284 and cysteine373 in ISC beta-actin. We synthesized the associated ISC beta-actin tryptic cystine-peptide (KCF-CDVDIR), characterized it by HPLC, MS. and MSMS, and identified it in the tryptic digest of the ISC beta-actin. These results support our earlier suggestion that the oxidative change in ISC beta-actin is a major cause of the irreversible sickling phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.