Herein, we report discrimination of dicarboxylic acids -fumaric acid (FA) and maleic acid (MA) -exhibiting geometrical isomerism, using nanoclusters based luminescent probe having excitation under broad day light. The luminescent probe was designed via complexation reaction between zinc ions and ligands (mercaptopropioinc acid; MPA) stabilizing the gold nanoclusters. This resulted in formation of nanoaggregates exhibiting bright green luminescence upon excitation at 450 nm capable of discriminating between FA and MA upto nanomolar level. The basis of discrimination has been attributed to deprotonation of FA and MA following interaction with MPA moieties present on the surface of the nanoaggregates and being governed by the stability of the respective conjugate base of the geometrical isomers of the dicarboxylic acids. As a consequence of different extent of deprotonation of FA and MA upon interaction with the cluster aggregates, different effect on the luminescence of the aggregates was observed, thus enabling discernible fluorimetric discrimination between FA and MA under visible light excitation.[a] Dr.
We report the formation of nanoscale particles born out of complexation reaction between zinc acetate and ascorbic acid under ambient conditions and in the aqueous medium. The reaction led to...
A cysteine-based complex of Mn 2+ led to the formation of nanoparticles in aqueous medium under ambient conditions. The formation and evolution of the nanoparticles in the medium were followed by ultraviolet-visible light (UV−vis) spectroscopy, circular dichroism, and electron spin resonance spectroscopy that also revealed a first-order process. The magnetic properties of the nanoparticles isolated as solid powders exhibited strong crystallite and particle size dependence. At low crystallite size, as well as particle size, the complex nanoparticles showed superparamagnetic behavior similar to other magnetic inorganic nanoparticles. The magnetic nanoparticles were found to undergo a superparamagnetic to ferromagnetic transition, and then to paramagnetic transition with a gradual increase in either their crystallite size or particle size. The discovery of dimension-dependent magnetic property of inorganic complex nanoparticles may usher in a superior option for tuning the magnetic behavior of nanocrystals, depending on the component ligands and metal ions.
We report room temperature complexation reaction mediated formation of luminescent nanoscale particles from an aqueous mixture of ascorbic acid and zinc acetate.<br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.