Few-Shot Learning refers to the problem of learning the underlying pattern in the data just from a few training samples. Requiring a large number of data samples, many deep learning solutions suffer from data hunger and extensively high computation time and resources. Furthermore, data is often not available due to not only the nature of the problem or privacy concerns but also the cost of data preparation. Data collection, preprocessing, and labeling are strenuous human tasks. Therefore, few-shot learning that could drastically reduce the turnaround time of building machine learning applications emerges as a low-cost solution. This survey paper comprises a representative list of recently 1 proposed few-shot learning algorithms. Given the learning dynamics and characteristics, the approaches to few-shot learning problems are discussed in the perspectives of meta-learning, transfer learning, and hybrid approaches (i.e., different variations of the few-shot learning problem).
Requiring less data for accurate models, few-shot learning has shown robustness and generality in many application domains. However, deploying few-shot models in untrusted environments may inflict privacy concerns, e.g., attacks or adversaries that may breach the privacy of user-supplied data. This paper studies the privacy enhancement for the few-shot learning in an untrusted environment, e.g., the cloud, by establishing a novel privacy-preserved embedding space that preserves the privacy of data and maintains the accuracy of the model. We examine the impact of various image privacy methods such as blurring, pixelization, Gaussian noise, and differentially private pixelization (DP-Pix) on few-shot image classification and propose a method that learns privacy-preserved representation through the joint loss. The empirical results show how privacy-performance tradeoff can be negotiated for privacy-enhanced few-shot learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.