Due to increasing volume of international trade, effect on increasing customs document, Customs play a role so that trade flows run without obstacles, this causes inspection of imported goods to be less than optimal, but on the other hand Customs are required to collect state revenues optimally. This study tries to solve this problem from the post-clearance control side with re-examination by construct an analytical data model to predict the suitable classification. This study uses data on the Notification of Imported Goods during 2020 at the Regional Office of DJBC XXX which using a sample of goods that has similarities but has the potential to be misclassified. This study uses the Cross-industry Standard Process for Data Mining (CRISP-DM) model and the Rapid Miner Studio 9.9.2 application. Based on the model formed, the prediction results obtained according to the appropriate classification according to data mining. It also found the factors that most impact to goods classification, the most impact is the Importer status, whereas the least impact is the goods lane. ABSTRAK: Seiring dengan volume perdagangan internasional yang semakin tinggi, jumlah dokumen kepabeanan yang harus diperiksa juga mengalami peningkatan. Hal ini menghambat peran Bea dan Cukai sebagai fasilitator perdagangan yang menyebabkan pemeriksaan barang impor kurang optimal. Di sisi lain, Bea dan Cukai dituntut untuk menghimpun penerimaan negara secara optimum. Penelitian ini mencoba untuk menyelesaikan permasalahan tersebut pada tahap post clearance dengan penelitian ulang, yaitu dengan membangun model data analitik untuk memprediksi klasifikasi barang yang diberitahukan oleh importir sudah sesuai atau belum. Penelitian ini menggunakan data Pemberitahuan Impor Barang selama tahun 2020 pada Kanwil DJBC XXX yang sampel data barangnya memiliki kemiripan tetapi berpotensi salah klasifikasi. Penelitian ini menggunakan model Cross-industry Standard Process for Data Mining (CRISP-DM) dan aplikasi Rapid Miner Studio 9.9.2. Berdasarkan permodelan yang dibentuk, didapatkan hasil prediksi klasifikasi yang sesuai menurut data mining. Didapat pula faktor yang paling memengaruhi kebenaran pemberitahuan klasifikasi barang impor, yaitu status importir, sedangkan yang paling tidak berpengaruh adalah jalur pengeluaran barang impor. Kata Kunci: Penelitian Ulang, Data Analitik, Penerimaan Negara, Klasifikasi Barang
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.