Apoptosis of hepatocytes results in the development of liver fibrosis, but the molecular signals mediating this are poorly understood. Degradation and modification of nuclear DNA is a central feature of apoptosis, and DNA from apoptotic mammalian cells is known to activate immune cells via Toll-like receptor 9 (TLR9). We tested if DNA from apoptotic hepatocytes can induce hepatic stellate cell (HSC) differentiation. Our data show that apoptotic hepatocyte DNA and cytidine-phosphate-guanosine oligonucleotides induced up-regulation of transforming growth factor 1 and collagen 1 messenger RNA both in the human HSC line LX-2 and in primary mouse HSCs. These effects were opposed by TLR9 antagonists. We have recently shown that adenosine inhibits HSC chemotaxis, and we now show that apoptotic hepatocyte DNA also inhibits platelet-derived growth factor (PDGF)-mediated HSC chemotaxis.
The inflammasome is a cytoplasmic multiprotein complex that has recently been identified in immune cells as an important sensor of signals released by cellular injury and death. Analogous to immune cells, hepatic stellate cells (HSC) also respond to cellular injury and death. Our aim was to establish whether inflammasome components were present in HSC and could regulate HSC functionality. Monosodium urate (MSU) crystals (100 microg/ml) were used to experimentally induce inflammasome activation in LX-2 and primary mouse HSC. Twenty-four hours later primary mouse HSC were stained with alpha-smooth muscle actin and visualized by confocal microscopy, and TGF-beta and collagen1 mRNA expression was quantified. LX-2 cells were further cultured with or without MSU crystals for 24 h in a transwell chemotaxis assay with PDGF as the chemoattractant. We also examined inhibition of calcium (Ca(2+)) signaling in LX-2 cells treated with or without MSU crystals using caged inositol 1,4,5-triphosphate (IP(3)). Finally, we confirmed an important role of the inflammasome in experimental liver fibrosis by the injection of carbon tetrachloride (CCl(4)) or thioacetamide (TAA) in wild-type mice and mice lacking components of the inflammasome. Components of the inflammasome are expressed in LX-2 cells and primary HSC. MSU crystals induced upregulation of TGF-beta and collagen1 mRNA and actin reorganization in HSCs from wild-type mice but not mice lacking inflammasome components. MSU crystals inhibited the release of Ca(2+) via IP(3) in LX-2 cells and also inhibited PDGF-induced chemotaxis. Mice lacking the inflammasome-sensing and adaptor molecules, NLRP3 and apoptosis-associated speck-like protein containing CARD, had reduced CCl(4) and TAA-induced liver fibrosis. We concluded that inflammasome components are present in HSC, can regulate a variety of HSC functions, and are required for the development of liver fibrosis.
Adenosine is produced during cellular hypoxia and apoptosis, resulting in elevated tissue levels at sites of injury. Adenosine is also known to regulate a number of cellular responses to injury, but its role in hepatic stellate cell (HSC) biology and liver fibrosis is poorly understood. We tested the effect of adenosine on the cytosolic Ca2+ concentration, chemotaxis, and upregulation of activation markers in HSCs. We showed that adenosine did not induce an increase in the cytosolic Ca2+ concentration in LX-2 cells and, in addition, inhibited increases in the cytosolic Ca2+ concentration in response to ATP and PDGF. Using a Transwell system, we showed that adenosine strongly inhibited PDGF-induced HSC chemotaxis in a dose-dependent manner. This inhibition was mediated via the A(2a) receptor, was reversible, was reproduced by forskolin, and was blocked by the adenylate cyclase inhibitor 2,5-dideoxyadenosine. Adenosine also upregulated the production of TGF-beta and collagen I mRNA. In conclusion, adenosine reversibly inhibits Ca2+ fluxes and chemotaxis of HSCs and upregulates TGF-beta and collagen I mRNA. We propose that adenosine provides 1) a "stop" signal to HSCs when they reach sites of tissue injury with high adenosine concentrations and 2) stimulates transdifferentiation of HSCs by upregulating collagen and TGF-beta production.
The Rho/ROCK pathway is activated in differentiated hepatic stellate cells (HSCs) and is necessary for assembly of actin stress fibers, contractility, and chemotaxis. Despite the importance of this pathway in HSC biology, physiological inhibitors of the Rho/ROCK pathway in HSCs are not known. We demonstrate that adenosine induces loss of actin stress fibers in the LX-2 cell line and primary HSCs in a manner indistinguishable from Rho/ROCK inhibition. Loss of actin stress fibers occurs via the A2a receptor at adenosine concentrations above 10 μM, which are present during tissue injury. We further demonstrate that loss of actin stress fibers is due to a cyclic adenosine monophosphate, protein kinase A–mediated pathway that results in Rho inhibition. Furthermore, a constitutively active Rho construct can inhibit the ability of adenosine to induce loss of actin stress fibers. Actin stress fibers are required for HSC contraction, and we demonstrate that adenosine inhibits endothelin-1 and lysophosphatidic acid–mediated HSC contraction. We propose that adenosine is a physiological inhibitor of the Rho pathway in HSCs with functional consequences, including loss of HSC contraction.
Homocysteine is a sulfur-containing amino acid that is involved in one-carbon metabolism. Hyperhomocysteinemia is a common phenomenon among elderly people. There is growing evidence of an association between hyperhomocysteinemia and geriatric multisystem problems, including coronary artery disease, stroke, peripheral vascular disease, cognitive impairment, dementia, depression, osteoporotic fractures, and functional decline. The proposed mechanisms of the association include angiotoxicity, neurotoxicity, and inhibition of collagen cross-linking. A homocysteine-lowering strategy may prevent or slow the development of these age-related problems. Vitamin supplementation and folic acid fortification of grain foods have been shown to decrease plasma homocysteine concentrations. More research is needed to investigate whether lifelong homocysteine lowering can prevent the development of late-life morbidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.