Plant polygalacturonase-inhibiting proteins (PGIPs) belong to the leucine-rich repeat (LRR) family and are known to prevent pathogen invasion by inhibiting the plant cell wall degrading enzyme, polygalacturonase. Our study reveals that these multigene-encoded defence proteins found in flowering plants only exhibit identical domain architecture with 10 tandemly-arranged LRRs. This implies that variations of PGIP inhibitory properties are not associated with the number of the repeats but with subtle changes in the sequence content of the repeats. The first and eighth repeat contain more mutations compared to the strict conservation of the plant-specific LRRs or any repeat at other positions. Each of these repeats forms a separate cluster in the phylogenetic tree, both within and across plant families, thus suggesting uniqueness with respect to their position. A study of the genes encoding PGIPs, shows the existence of two categories (i) single exon and hence no intron; and (ii) two exons with an intron in between. Analyses of the intron phase and correlation of the exon-intron structure with the compact structural modules in PGIPs support insertion of introns in the pre-existing single exon genes and thus the intron late model. Lack of conservation of phase across families and formation of individual clusters for each family in the phylogenetic tree drawn with the intron sequences illustrate the event of insertion that took place separately in each of these families.
The nitrogen cycle is most complex and very important for the life on earth. Nitrifying bacteria which carried out nitrogen cycling process play a vital role in water quality control, thus creating a genomic fingerprint database for surveillance and monitoring of genetic variability of nitrifying bacteria is very important and also to establish a Biosecurity protocol for the Bheries located in different areas of West Bengal. The currently evolutionary relationships and the natural diversity of Ammonia Oxidizing Bacteria (AOB) and Nitrite Oxidizing Bacteria (NOB) is mainly based on comparative sequence analyses of their genes encoding the 16S rRNA and the active site polypeptide of the ammonia monooxygenase (AmoA) and Nitrite oxidoreductase (NxrA) in the East Kolkata Wetland. This study extended significantly the 16S rRNA and amoA databases for AOB, nxrA databases for NOB. Therefore, either of the functional markers (amoA or nxrA) can be used to trace ammonia oxidizers or structural marker (16S rDNA) can be used to trace specific species in environmental studies. These techniques included the use of 16S rDNA genes to characterize natural AOB and NOB populations and to analyze their taxonomic and phylogenetic features. The current perception of AOB and NOB phylogeny established by comparative 16S rRNA sequence analysis could be confirmed independently by exploiting the gene amoA and nxrA genes and proved as an alternative phylogenetic marker. The aim of our work is to investigate the potential of the ammonia monooxygenase subunit A gene (amoA) and Nitrite oxidoreductase (nxrA) gene as functional markers for AOBs and NOBs along with 16S rDNA sequence analysis in EKW. For ecological surveillance, genes like amoA and nxrA specific for the nitrifying bacteria under present research work could be a more reliable tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.