Experimental research was conducted on a rapid compression and expansion machine (RCEM) that has characteristics similar to a gasoline compression ignition (GCI) engine, using two gasoline–biodiesel (GB) blends—10% and 20% volume—with fuel injection pressures varying from 800 to 1400 bar. Biodiesel content lower than GB10 will result in misfires at fuel injection pressures of 800 bar and 1000 bar due to long ignition delays; this is why GB10 was the lowest biodiesel blend used in this experiment. The engine compression ratio was set at 16, with 1000 µs of injection duration and 12.5 degree before top dead center (BTDC). The results show that the GB20 had a shorter ignition delay than the GB10, and that increasing the injection pressure expedited the autoignition. The rate of heat release for both fuel mixes increased with increasing fuel injection pressure, although there was a degradation of heat release rate for the GB20 at the 1400-bar fuel injection rate due to retarded in-cylinder peak pressure at 0.24 degree BTDC. As the ignition delay decreased, the brake thermal efficiency (BTE) decreased and the fuel consumption increased due to the lack of air–fuel mixture homogeneity caused by the short ignition delay. At the fuel injection rate of 800 bar, the GB10 showed the worst efficiency due to the late start of combustion at 3.5 degree after top dead center (ATDC).
This experimental study was conducted using a single-cylinder compression ignition (CI) engine with a pilot injection strategy to determine the effect of fuel injection pressure and the timing of the second start of injection (SOI2) on combustion and emission characteristics. This experiment used a mixture of 80% commercial gasoline (G80%) and 20% soybean biodiesel (B20%), by volume. The pilot injection strategy was applied with varying SOI2. Meanwhile, the first start of injection (SOI1) was constant at -350° ATDC and 900 bar fuel injection pressure. A range of fuel injection pressures from 400 to 900 bars and varied injection timing from -44 to -36 CA ATDC was applied at SOI2 to analyze the effect of injection timing and injection pressure on combustion characteristics and emissions. The increasing fuel injection pressure of GB20 in early injection timing will cause a longer ignition delay. The autoignition resistance of GB20 and the improvement of spray velocity enhance the wall wetting probability, consequently reducing the autoignition capability as fuel deposits were formed in the cylinder wall vicinity. Closer injection timing to TDC inhibits spray penetration due to higher room pressure and density, causing lower ignition delay. For GB20, 700 bar fuel injection pressure became the turning point in the ignition delay due to a lower fuel penetration velocity as a higher fuel injection pressure was applied. NOx emissions were identified as a sign of high temperature produced during combustion. The lowest CO2 emissions and the longest ignition delay appeared at the 700-bar injection pressure. Because incomplete combustion resulted in fuel deposits in the vicinity of the cylinder and temperature decrease, injection timings earlier than 40°CA BTDC initiated low thermal reaction (LTR) conditions, causing a temperature decrease during combustion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.