As fossil fuels were depleting at an alarming rate, the development of renewable energy has become necessary. One of the promising renewable energy to be used is biodiesel. The interest in using third-generation feedstock, which is microalgae, is rapidly growing. The use of third-generation biodiesel feedstock will be more beneficial as it does not compete with food crop use and land utilization. The advantageous characteristic which sets microalgae apart from other biomass sources is that microalgae have high biomass yield. Conventionally, microalgae biodiesel is produced by lipid extraction followed by transesterification. In this study, combination process between hydrothermal liquefaction (HTL) and esterification is explored. The HTL process is one of the biomass thermochemical conversion methods to produce liquid fuel. In this study, the HTL process will be coupled with esterification, which takes fatty acid from HTL as raw material for producing biodiesel. Both the processes will be studied by simulating with Aspen Plus and thermodynamic analysis in terms of energy and exergy. Based on the simulation process, it was reported that both processes demand similar energy consumption. However, exergy analysis shows that total exergy loss of conventional exergy loss is greater than the HTL-esterification process.
Abstract. Recently, algae have received a lot of attention as a new biomass source for the production of renewable energy, such as biodiesel. Conventionally, biodiesel is made through esterification or transesterification of oils where the process involves a catalyst and alcohol to be reacted in a reactor. However, this process is energy intensive for drying and extraction step. To overcome this situation, we studied simulation of a new route of hydro-esterification process which is combine hydrolysis and esterification processes for biodiesel production from wet microalgae. Firstly, wet microalgae treated by hydrolyzer to produce fatty acids (FAs), separated with separator, and then mixed with methanol and esterified at subcritical condition to produce fatty acid methyl esters (FAMEs) while H2SO4 conducted as the catalyst. Energy and material balance of conventional and hydrolysis-esterification process was evaluated by Aspen Plus. Simulation result indicated that conventional route is energy demanding process, requiring 4.40 MJ/L biodiesel produced. In contrast, the total energy consumption of hydrolysis-esterification method can be reduced significantly into 2.43 MJ/L biodiesel. Based on the energy consumption comparison, hydroesterification process is less costly than conventional process for biodiesel production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.