Horse riding exercise, also known as hippotherapy is a popular treatment for children with cerebral palsy (CP). However, the need for trained therapist, massive land use, and expensive maintenance of the horse ranch makes hippotherapy not affordable or even available for most patients in Indonesia. This problem motivates us to consider mechanical horse riding simulator machines to replace actual horse hippotherapy. However, most patients are children and are easily bored when asked to do monotonous activities for an extended period. The room setting also does not give the patient visual inputs that usually help motivates the children in real-horse hippotherapy activities. To solve this problem, we designed an exercise game (exergaming) software which we named Sirkus Apel, providing the patients with fun activities while doing the therapy. We also design an inertial sensor-based controller that lets the patients control the in-game horse by their back movements, which also benefits CP patients. To make the visual input enjoyable to the user while also considering the user’s safety, we built a convex mirror-based dome virtual reality to provide an immersive 3-D experience. We then project the game content to the dome to provide an immersive experience to the patients making it as if they are riding a real horse inside the game.
Smart grid is a new breakthrough in terms of transmission and distribution power lines from power plants. All communication data transmission that occurs on the smart grid is done digitally, making it easier for operators to control and monitor every transmission data as well as monitor any equipment connected to the smart grid. However, the use of digital technologies makes the security becomes an important aspect of any communication that occurs in a smart grid system. The security will focus on the delivery and transmission of data transmitted from the power plant to any existing substations, as well as data communication that occurs between substations and also inside the substation. Data communications between substations is a very critical thing, so need for security mechanisms are applied to that communication. The addition of security against any communication will affect the performance of the data transmission in smart grid. The implementation of IPSec is used as security protocols are applied to each gateway that resides on each substations. This is done so that any communication between substations can be done safely. It is also necessary that the exact configuration of the encryption and authentication algorithms used in the implementation of IPSec protocol could potentially provide the best performance. Implementation substation network design on smart grid and security of data transmission is done by simulation using OPNET modeler 14.5.
To pursue a healthy lifestyle, people are increasingly concerned about their food ingredients. Recently, it has become a common practice to use an online recipe to select the ingredients that match an individual’s meal plan and healthy diet preference. The information from online recipes can be extracted and used to develop various food-related applications. Named entity recognition (NER) is often used to extract such information. However, the problem in building an NER system lies in the massive amount of data needed to train the classifier, especially on a specific domain, such as food. There are food NER datasets available, but they are still quite limited. Thus, we proposed an iterative self-training approach called semi-supervised multi-model prediction technique (SMPT) to construct a food ingredient NER dataset. SMPT is a deep ensemble learning model that employs the concept of self-training and uses multiple pre-trained language models in the iterative data labeling process, with a voting mechanism used as the final decision to determine the entity’s label. Utilizing the SMPT, we have created a new annotated dataset of ingredient entities obtained from the Allrecipes website named FINER. Finally, this study aims to use the FINER dataset as an alternative resource to support food computing research and development.
Losing a hand can significantly impact an individual’s physical and emotional well-being. Prosthetic hands can help restore some function and independence for individuals who have lost a hand. However, the prosthetic hands available on the market are prohibitively expensive, especially for developing countries, such as Indonesia. Commercial electronically powered prosthetic hands can be expensive, having prices ranging from $25,000 to $75,000 and annual maintenance costs ranging from $500 to $3000. In contrast, body-powered prosthetic hands are generally cheaper, ranging from $2000 to $10,000, but are still considered expensive for many people in developing countries. To make prosthetic hands more accessible, we have designed a body-powered prosthetic hand, “Karla”, using affordable materials and with as few components as possible. This report presents our proposed designs, the innovations, the parts in detail, and experiences using the designed prosthetic hand. The highlight of our design is a novel whippletree-like mechanism that utilizes the 3-D space to contract the fingers of the prosthetic hand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.