<p>Subject indexing is the act of describing or classifying a document by index terms or other symbols in order to indicate what the document is about, to summarize its content or to increase its findability. The selection of term candidate on automatic subject indexing is very important, because it can influence the result of topic extraction on document. Recently on the automatic subject indexing especially in the term candidate selection only consider terms in the document collection. In contrast, indexer prefers to choose general term on manual subject indexing for selection of term candidate. In this paper, we proposed a new strategy for selecting term candidate on automatic subject indexing for extraction the main topic from the document. The proposed method uses a combination of Term Frequency Inverse Document Frequency (TF*IDF) and Random Walk on the structure of thesaurus. Experimental results show that the proposed method can select the terms candidate that relevant to the topic of the document with F-Measure of 0.24.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.