Periodontitis is an infectious illness which leads to the inflammation of protective tissues around the teeth and the continuous loss of alveolar bone and conjunctive tissue. Biomarker analysis in serum and saliva helps in the evaluation of disease progression and activity. It is also established that every inflammatory change along with resultant damage of tissues ends up in altered pH values in the fluids and tissues. Aim: To correlate the connection of pH levels in both blood as well as saliva in healthy, periodontitis, and gingivitis patients. Materials and Methods: The current research involved 145 subjects amidst the age of 20 and 55 years. The subjects were split into three different groups: healthy (Group A), gingivitis (Group B), and finally chronic periodontitis (Group C). The recording of clinical parameters was done by gingival index (GI), probing depth (PD), and plaque index (PI). pH of saliva and blood was analyzed with the help of digital single electrode pH meter. Subjects have gone through scaling and root planning (SRP) coupled with the instructions of oral hygiene. They were recalled post 4 weeks, and saliva and blood samples were gathered for analyzing pH. Results: Clinical parameters GI and PI were statistically important in both group C as well as group B post SRP. A crucial change has been observed in attachment levels (AL) and PD in the case of periodontitis group post SRP. The difference in the salivary pH values were significant between group B vs. C and A vs. C before the treatment because the values for group C were acidic, whereas in groups B and A the pH was alkaline. After the treatment, the values were still significant because the pH has become more alkaline compared to preoperative value in both group B and C. Saliva’s pH levels have demonstrated a statistically significant reduction in group C post SRP. Conclusion: Salivary pH levels and blood evidently became alkaline in the group C patients post SRP and there is a positive correlation between them and the clinical parameters.
Background and Objectives: The duration of bone turnover is critical, and different time points help in identifying the optimal endpoint of treatment duration. However, investigating the combination of xenograft and stem cells to allow tissue regeneration within an ideal time duration remains an under-investigated topic. The current study aimed to assess the impact of equine-derived xenograft bone blocks in assisting the human periodontal ligament stem cells (PDLSCs) to demonstrate osteogenic differentiation (collagen type 1 expression and calcium deposition) within an osteogenic growth media. Materials and Methods: Human PDLSCs were acquired commercially and seeded onto xenograft bone blocks. After the 14th and 21st day of culture, enzyme-linked immunoassay (ELISA) was utilized for the detection and quantification of levels of collagen type I, while the mineralization assessment (deposition of calcium) was conducted by staining the PDLSCs with Alizarin Red S (ARS). The statistical comparison between the means and standard deviations of study groups were evaluated using analysis of variance (ANOVA). Results: ELISA assessment revealed an upsurge in the expression of collagen type I for PDLSCs cultured with xenograft after 14 and 21 days compared to the controls (intergroup comparisons significant at p < 0.05). Similar findings were obtained for mineralization assessment and on ARS staining. PDLSCs cultured with xenograft bone blocks presented an increased deposition of calcium compared to their control counterparts (intergroup comparisons significant at p < 0.05). Conclusions: PDLSCs embedded in xenograft bone blocks inside an osteogenic growth medium demonstrated greater osteogenic differentiation potential after 14 and 21 days. This superior osteogenic differentiation capability was evident by increased collagen type I expression and more significant calcium deposition at the 14th and 21st days after culture.
Aim: The aim of this study was to compare between equine and human bone blocks in the osteogenic differentiation of cultured human periodontal ligament stem cells (hPDLSCs) at 14 and 21 days of culture, using confocal laser microscopy and scanning electron microscopy. Materials and Methods: In vitro cultures of commercially obtained hPDLSCs were seeded onto equine and human bone blocks. At 14 days and 21 days of culture, confocal laser microscope images were obtained to assess cellular differentiation and adhesion, and scanning electron microscope images were obtained to validate the osteogenic differentiation by showing the morphological characteristics of the new bone cells. Results: Both equine and human bone blocks showed positive staining for newly formed bone cells through the confocal laser microscope analysis, however, a higher signal intensity was expressed at 21 days of culture. These findings indicate the biocompatibility of hPDLSC with both types of bone blocks, cellular differentiation, and adhesion. Scanning electron microscopy images validated the osteogenic differentiation by showing the common characteristics of bone cells as flattened, polygonal morphology with multiple extending cytoplasmic processes. Conclusion: Both equine and human bone blocks were able to confirm the osteogenic capability of seeded human PDLSC. There was no significant difference between equine and human bone blocks on the human PDLSC differentiation. Superior osteogenic differentiation of cultured hPDLSCs was evident at 21 days in comparison to 14 days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.