The xeroderma pigmentosum protein A (XPA) and replication protein A (RPA) proteins fulfill essential roles in the assembly of the preincision complex in the nucleotide excision repair (NER) pathway. We have previously characterized the two interaction sites, one between the XPA N-terminal (XPA-N) disordered domain and the RPA32 C-terminal domain (RPA32C), and the other with the XPA DNA binding domain (DBD) and the RPA70AB DBDs. Here, we show that XPA mutations that inhibit the physical interaction in either site reduce NER activity in biochemical and cellular systems. Combining mutations in the two sites leads to an additive inhibition of NER, implying that they fulfill distinct roles. Our data suggest a model in which the interaction between XPA-N and RPA32C is important for the initial association of XPA with NER complexes, while the interaction between XPA DBD and RPA70AB is needed for structural organization of the complex to license the dual incision reaction. Integrative structural models of complexes of XPA and RPA bound to single-stranded/double-stranded DNA (ss/dsDNA) junction substrates that mimic the NER bubble reveal key features of the architecture of XPA and RPA in the preincision complex. Most critical among these is that the shape of the NER bubble is far from colinear as depicted in current models, but rather the two strands of unwound DNA must assume a U-shape with the two ss/dsDNA junctions localized in close proximity. Our data suggest that the interaction between XPA and RPA70 is key for the organization of the NER preincision complex.
Nucleotide excision repair (NER) is a versatile DNA repair pathway essential for the removal of a broad spectrum of structurally diverse DNA lesions arising from a variety of sources, including UV irradiation and environmental toxins. Although the core factors and basic stages involved in NER have been identified, the mechanisms of the NER machinery are not well understood. This review summarizes our current understanding of the mechanisms and order of assembly in the core global genome (GG-NER) pathway.
The XPA and RPA proteins fulfill essential roles in the assembly of the preincision complex in the nucleotide excision repair pathway. We have previously characterized the two interaction surfaces between XPA and RPA, with the RPA32 and RPA70AB subunits. Here we show that the mutations in the two individual interaction surfaces reduce NER activity in biochemical and cellular systems, and that combining mutations in two domains leads to an additive inhibition of NER, suggesting that they fulfill distinct roles. Our data suggest that the interaction between XPA and RPA32 is important for the initial association of XPA with NER complexes, while the interaction between XPA and RPA70 is needed for structural organization of the complex to license the dual incision reaction. SAXS analysis of complexes of XPA and RPA bound to ss/dsDNA junction substrates reveals the architecture of XPA and RPA in the preincision complex and shows that the two interaction domains between RPA and XPA are located at opposite sides of the two molecules. We propose a structure for the overall NER preincision complex that shows that the two strands of the NER bubble assume a U-shape with the two ss/dsDNA junctions localized in close proximity, with the interaction between XPA and RPA70 as one of the key organizing elements.
Nucleotide excision repair (NER) neutralizes treatment with platinum (Pt)-based chemotherapy by removing Pt lesions from DNA. Previous study has identified that missense mutation or loss of either of the NER genes Excision Repair Cross Complementation Group 1 and 2 (ERCC1 and ERCC2) leads to improved patient outcomes after treatment with Pt-based chemotherapies. Although most NER gene alterations found in patient tumors are missense mutations, the impact of such mutations in the remaining nearly 20 NER genes is unknown. Towards this goal, we previously developed a machine learning strategy to predict genetic variants in an essential NER scaffold protein, Xeroderma Pigmentosum Complementation Group A (XPA), that disrupt repair activity on a UV-damaged substrate. In this study, we report in-depth analyses of a subset of the predicted NER-deficient XPA variants, including in vitro analyses of purified recombinant protein and cell-based assays to test Pt agent sensitivity in cells and determine mechanisms of NER dysfunction. The most NER deficient variant Y148D had reduced protein stability, weaker DNA binding, disrupted recruitment to damage, and degradation resulting from tumor missense mutation. Our findings demonstrate that tumor mutations in XPA impact cell survival after cisplatin treatment and provide valuable mechanistic insights to further improve variant effect prediction efforts. More broadly, these findings suggest XPA tumor variants should be considered when predicting patient response to Pt-based chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.