As the world is witnessing the epidemic of coronavirus disease 2019, emerging genetics and clinical pieces of evidence suggest a similar immunopathology to those of severe acute respiratory syndrome and Middle East respiratory syndrome. Staying at home to prevent the spread of the virus and consequently being largely inactive is associated with unintended consequences. These can actually enhance the infection risk and exacerbate poor health conditions including impaired immune function. Physical activity is a feasible way of improving health, particularly physical and mental health in a time of social isolation. However, people with certain health conditions in these circumstances may need a special physical activity programme in addition to any exercise they may already be performing via online programmes. This review aims to provide practical guidelines during the COVID-19 quarantine period. We suggest performing aerobic, resistance training, respiratory muscle training and yoga in the healthy, and in those with upper respiratory tract illness, patients with lower respiratory tract illness should be restricted to respiratory muscle training and yoga. In addition, vitamins D and C, omega-3 fatty acids, and regular consumption of fruit and vegetables might be considered as nutritional aids to support the immune system in those affected by COVID-19.
Athletic women have shown a higher risk of ACL injury during jump landing compared to men. Plyometric training can be an alternative way to minimize the risk of knee injuries via the changed muscle activity patterns. Hence, the aim of this study was to determine the effects of a 4-week plyometric training program on the muscle activity pattern in different phases of one-leg drop jump in active girls. Active girls were randomly allocated into 2 groups (Plyometric training = 10, Control group = 10) where the plyometric training group (PTG) performed 60 min exercises, 2 sessions/1 week for 4 weeks while the control group (CG) had their daily activity. In the pre to post test, the sEMG was recorded from the Rectus Femoris (RF), Biceps Femoris (BF), Medial Gastrocnemius (GaM), and Tibialis Anterior (TA) muscles of the dominant leg during the Preparatory phase (PP), Contact Phase (CP), Flight Phase (FP) of one-leg drop jump. Electromyography variables (Signal amplitude, Maximum activity, Time to peak (TTP), Onset and activity time and Order muscle activity) and Ergo jump variables (Time of preparatory phase (TPP), Time of contact phase (TCP), Time of flight (jump height) phase (TFP), and Explosive power were analyzed. The Univariate ANCOVA test showed a significant difference between the two groups in Activity Time, whilst adjusting for pre-test as a Covariate, only in TA muscle (F(1,17) = 5.09, p = 0.038, η2 = 0.230). In PTG. TA (− 15%), GaM (− 19%), and BF muscles (− 9%) started their activity earlier while there was no significant difference between the two groups at the Onset time. TTP of RF was significantly different between the 2 groups only in the PR phase (0.216 ± 0.07 vs 0.153 ± 0.09 s) (p = 0.049, 95% CI = 0.001, 0.127). Results of the present study suggest that a 4-week plyometric training can improve the stability of leg joints via earlier recruitment of muscles and change activity patterns in lower limb muscles. It also recommends that the preparatory phase before landing be considered an important stage in preventing sports injuries in a training program.
Objective: This study aimed to compare the effect of interval and continuous small-sided games (SSG) training on the bio-motor abilities of young soccer players. Methods: Sixteen young soccer players (age: 19.5±0.5 years; height: 177±4.72) were ranked based on the result of a running-based anaerobic sprint test (RAST) and randomly divided into two groups; continuous SSG training (CSSG, n = 8) and interval SSG (ISSG, n = 8). The training protocols were performed for eight weeks, three sessions per week. Participants were assessed twice (pre- and post-intervention) to estimate their anaerobic capacity with the RAST, aerobic capacity with Yo-Yo intermittent recovery test, body fat percentage with a bioimpedance analysis, speed with a 30-meter run test, and agility with the Illinois agility test. During the training session, the rating of the perceived exertion (RPE) and heart rate (mean and maximum) were recorded to assess the training load. Results: In general, both aerobic and anaerobic capacities improved after ISSG (p<0.05, for all). The be-tween-group analysis with repeated measures ANOVA revealed that there were higher values for ISSG than CSSG groups in the post-intervention in anaerobic power (p=0.042, ηp2=0.264). In addition, the independent t-test results indicated that ISSG presented lower values of mean heart rate (p=0.023, effect size [ES]=0.85) and RPE (p<0.05, ES=0.88) than CSSG. Moreover, higher values for maximum heart rate were revealed for ISSG than for the CSSG group (p=0.004, ES=0.85). Conclusion: We conclude that ISSG could provide better results in the anaerobic power than CSSG.
Objective The present study compared the effects of two different small-sided game (SSG) training methods, interval (ISSG) and continuous (CSSG) on the bio-motor abilities of young soccer players. Methods Sixteen young soccer players (age: 19.5 ± 0.5 years; height: 177 ± 4.72 cm) were ranked based on the result of a running-based anaerobic sprint test (RAST) and randomly divided into two groups: CSSG (n = 8) and ISSG (n = 8). The training protocols were performed for eight weeks, three sessions per week. Participants were assessed twice (pre- and post-intervention) to estimate their anaerobic capacity with the RAST, aerobic capacity with Yo-Yo intermittent recovery test, body fat percentage with a bioimpedance analysis, speed with a 30-meter run test, and agility with the Illinois agility test. During the training session, the rating of the perceived exertion (RPE) and heart rate (mean and maximum) were recorded to assess the training load. Results In general, aerobic and anaerobic capacities improved after ISSG (p < 0.05, for all). The between-group analysis with repeated measures ANOVA revealed higher values for ISSG than CSSG groups post-intervention in anaerobic power (p = 0.042, ηp2 = 0.264). In addition, the independent t-test results indicated that ISSG presented lower values of mean heart rate (p = 0.023, effect size [ES] = 0.85) and RPE (p < 0.05, ES = 0.88) than CSSG. Moreover, higher values for maximum heart rate were revealed for ISSG than for the CSSG group (p = 0.004, ES = 0.85). Conclusion In conclusion, the findings of this study suggests that ISSG can lead to better improvements in anaerobic power and aerobic capacity than CSSG. Additionally, the ISSG led to a lower mean heart rate and RPE than the CSSG. Therefore, coaches and trainers may want to consider incorporating ISSG into their training programs for young soccer players to enhance their bio-motor abilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.